In Situ Geophysical Exploration by Humans in Mars Analog Environments

Geophysicist at NOAA
May. 15, 2010
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
In Situ Geophysical Exploration by Humans in Mars Analog Environments
1 of 60

More Related Content

What's hot

SofiaSofia
SofiaChris Munson
Applications of space technologyApplications of space technology
Applications of space technologyNabeel Khalid
ILOA Galaxy Forum Hawaii 2014 -- Waimea -- Phil MerrellILOA Galaxy Forum Hawaii 2014 -- Waimea -- Phil Merrell
ILOA Galaxy Forum Hawaii 2014 -- Waimea -- Phil MerrellILOAHawaii
2127521275
21275Chandrakala V
What is geostationary satelliteWhat is geostationary satellite
What is geostationary satelliteDPSG
FUTURE SPACE TECHNOLOGYFUTURE SPACE TECHNOLOGY
FUTURE SPACE TECHNOLOGYBala Subramanian

Viewers also liked

05 exploration of radioactive minerals in the late ordavician jordan05 exploration of radioactive minerals in the late ordavician jordan
05 exploration of radioactive minerals in the late ordavician jordanMonatom Mgl
03 hadisuwito presentation rev03 hadisuwito presentation rev
03 hadisuwito presentation revMonatom Mgl
T11 geophysical testing-landschootT11 geophysical testing-landschoot
T11 geophysical testing-landschootAPWA Florida Chapter 2013 Annual Meeting and Trade Show
GPR and Integrating Geophysical Methods at PortusGPR and Integrating Geophysical Methods at Portus
GPR and Integrating Geophysical Methods at PortusJessica Ogden
Introduction to electromagnetic exploration methodIntroduction to electromagnetic exploration method
Introduction to electromagnetic exploration methodoilandgas24
Ground Penetrating Radar (GPR) Ground Penetrating Radar (GPR)
Ground Penetrating Radar (GPR) Abhijit Patil

Similar to In Situ Geophysical Exploration by Humans in Mars Analog Environments

Transofrming earthquake detectionTransofrming earthquake detection
Transofrming earthquake detectionSérgio Sacani
Suborbital Opportunities for StudentsSuborbital Opportunities for Students
Suborbital Opportunities for StudentsKimberly Ennico Smith
Viollent colisional history_of_vestaViollent colisional history_of_vesta
Viollent colisional history_of_vestaSérgio Sacani
John A Chapman mining the moon 20060723John A Chapman mining the moon 20060723
John A Chapman mining the moon 20060723John Chapman
Exploring Martian Magnetic Fields with a HelicopterExploring Martian Magnetic Fields with a Helicopter
Exploring Martian Magnetic Fields with a HelicopterSérgio Sacani
Mars 2020Mars 2020
Mars 2020Massa Critica

Similar to In Situ Geophysical Exploration by Humans in Mars Analog Environments(20)

More from Brian Shiro

How to Become a MartianHow to Become a Martian
How to Become a MartianBrian Shiro
Asynchronous geological exploration operations at the HI-SEAS planetary surfa...Asynchronous geological exploration operations at the HI-SEAS planetary surfa...
Asynchronous geological exploration operations at the HI-SEAS planetary surfa...Brian Shiro
Tsunami Lessons from “The Impossible”Tsunami Lessons from “The Impossible”
Tsunami Lessons from “The Impossible”Brian Shiro
Pacific Tsunami Warning Center: Introduction to Tsunamis and PTWC OperationsPacific Tsunami Warning Center: Introduction to Tsunamis and PTWC Operations
Pacific Tsunami Warning Center: Introduction to Tsunamis and PTWC OperationsBrian Shiro
Pacific Tsunami Warning Center: Introduction to Enhanced Pacific Products and...Pacific Tsunami Warning Center: Introduction to Enhanced Pacific Products and...
Pacific Tsunami Warning Center: Introduction to Enhanced Pacific Products and...Brian Shiro
Tsunami Warning at PTWCTsunami Warning at PTWC
Tsunami Warning at PTWCBrian Shiro

Recently uploaded

20230927 Tech_For_Good Discovery_Summit.pdf20230927 Tech_For_Good Discovery_Summit.pdf
20230927 Tech_For_Good Discovery_Summit.pdfInternational Society of Service Innovation Professionals
Food Hygiene 1 - Intro to food hygiene.pptxFood Hygiene 1 - Intro to food hygiene.pptx
Food Hygiene 1 - Intro to food hygiene.pptxCJMcErlean
Cloud Study Jams 23-24 - DMCECloud Study Jams 23-24 - DMCE
Cloud Study Jams 23-24 - DMCESARTHAK170317
clinical Neuroanatomy_of_ventricular_system_ and CSF suparna[1]-1.pptxclinical Neuroanatomy_of_ventricular_system_ and CSF suparna[1]-1.pptx
clinical Neuroanatomy_of_ventricular_system_ and CSF suparna[1]-1.pptxKolkata,west bengal, India
Advertising Strategy Lecture 1 2023.pptxAdvertising Strategy Lecture 1 2023.pptx
Advertising Strategy Lecture 1 2023.pptxNeil Kelley
Types and Sources of impurities.pptx Pharmaceutical Inorganic chemistry UNIT-...Types and Sources of impurities.pptx Pharmaceutical Inorganic chemistry UNIT-...
Types and Sources of impurities.pptx Pharmaceutical Inorganic chemistry UNIT-...Ms. Pooja Bhandare

In Situ Geophysical Exploration by Humans in Mars Analog Environments

Editor's Notes

  1. Haughton is an impact crater, a common and fundamental geological feature of the Martian surface (and of many other planetary surfaces). Haughton is set in a polar desert, a cold, relatively dry, windy, and sparsley vegetated environment that might be akin to an Early Mars environment, when conditions are thought to have been wetter and perhaps warmer. The center of the crater hosts a very unusual type of terrain, impact breccia permeated with ground-ice. At Haughton, the impact breccia is permeated with "permafrost" (ground-ice), thus producing what may be the closest natural analog on Earth to the Martian regolith. Shortly after its formation, the Haughton crater was occupied by a lake in which sediments were laid down. The lake has long since drained away, but the sediments are still preserved in patches inside the crater, slowly weathering away under the cold arctic climate. These ancient crater lake sediments provide an analog for sediments expected to be found in ancient impact craters on Mars that may have once contained lakes as well. Haughton also provides an opportunity to study the amount of warming of early lake waters by impact-induced hydrothermal activity. In cold environments such as that of the Arctic or Mars, the heat released at the site of a freshly-formed impact crater may produce what has been called a "phase of thermal biology", an episode of biological development possible only under the uncharacteristically warm temperatures A variety of valleys ranging from intricate networks of channels to deep canyons dissect the landscape at Haughton. Several types of valleys resemble those seen on Mars. The resemblance appears to be more than superficial, as the similarities are often specific and unique. Studying how the varieties on Devon Island formed may provide clues to how some valleys on Mars formed. The Arctic is host to a variety of periglacial formations, geologic features such as ice mounds and polygon fields which are indicative of the presence of ice concentrations in the ground. Many features on Mars, especially at high latitudes, have been hypothesized to be periglacial formations. Haughton and the rest of Devon Island are a paradise of periglacial landforms, providing an opportunity to explore this additional parallel. Understanding periglacial formations at Haughton may ultimately help recognize where ice can be found at shallow depth on Mars. Haughton also offers examples of life adapted to an extreme environment. Biological contrasts between life inside and outside the crater have also been noted, thus shedding light on the role of impact craters as specific ecological niches on planets. Biological research at Haughton may thus have profound ties with exobiological studies on Mars. http://resources. yesican-science . ca/trek/mars/devon . htm
  2. Seismology: Brian Shiro Goal at FMARS-Testing human factors- how can human astronauts deploy a seismic station on Mars Goals on Mars-Seismology is a branch of geophysics that studies the interior of earth using seismic waves. (sound waves that are typically made from earthquakes). Seismology can teach us about the interior of the planet. By using the speed by which the sound waves travel, scientists can learn things like how big is the core, what is Mars made of inside, how thick is the crust, etc…) We can also characterize the seismicity of Mars (are there earthquakes? If so, how many earthquakes per year, are they a hazard for astronauts?) We can also gain other important information from seismometers concerning meteorite impacts and landslides, but in oredr to collect this date we need a lot of seismometers. Having human astronauts place them is the best scenario because they can be placed in the best possible locations- unlike just having them on Mars Landers.
  3. Groundwater Survey: Brian Shiro The groundwater survey is accomplished using a Time Domain Electromagnetic Survey This is using electric and magnetic fields to determine to resistivity (opposite of conductivity) of the subsurface with the goal of finding groundwater. This method has been used on Earth for over 100 years to find water and other minerals and resources and it is the most promising technique to use on Mars for finding groundwater. Several prototypes have been suggested for Mars including putting the system on a rover that would collect the data by driving around and another system that would deploy the transmitter coil by shooting it out on rockets. Our goal was to start with the basic system that has been used for 100 years on earth and to figure out what parts of it would be difficult to do on mars so that it could be properly modified or new techniques could be created. Groundwater Survey: Brian Shiro How it works: Large shapes of electric coil (in our case squares) are laid out on the ground. Three separate receiver measurements are taken- one in the center and one each extending out from the midline of the square. This is how the measurements are taken: An electric current is run through the wire, and this static electric current creates a magnetic current perpendicular to and around the wire. Then, you shut off the electrical current which causes the magnetic current to start degrading. Because a changing magnetic current creates an electrical current, the surrounding rocks then have an electric field. This electric field then creates a magnetic field, which as it decays, allows the receiver to pick up an electric current which the device records. This process is repeated over and over during a measurement and it gives a resistivity profile with depth. Depending on the transmitter loop size you can “see” down to different depths (up to several kilometers). At FMARS we are using squares of 40 meters per side which allows us to see dowm between 150-200meters.
  4. Abrasion study to prepare for NDX-2, collaboration with Pablo DeLeon
  5. Ask Josh for photo
  6. Kissing Camel Range, a putative paleo inverted channel feature
  7. 109-m total profile length 6 geophone spreads with: 12 geophones at 5-ft spacing on a Geostuff land streamer 36 shots with: 3x stacking each at 17 shot locations with 30-ft spacing Geode seismograph
  8. Move and Repeat