Makalah statistika

72,752 views

Published on

Published in: Education
10 Comments
32 Likes
Statistics
Notes
No Downloads
Views
Total views
72,752
On SlideShare
0
From Embeds
0
Number of Embeds
194
Actions
Shares
0
Downloads
2,086
Comments
10
Likes
32
Embeds 0
No embeds

No notes for slide

Makalah statistika

  1. 1. BAB 1<br />PENDAHULUAN<br />1.1 Latar Belakang<br />Penggunaan istilah statistika berakar dari istilah istilah dalam bahasa latin modern statisticum collegium ("dewan negara") dan bahasa Italia statista ("negarawan" atau "politikus").<br />Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai "ilmu tentang negara (state)". Pada awal abad ke-19 telah terjadi pergeseran arti menjadi "ilmu mengenai pengumpulan dan klasifikasi data". Sir John Sinclair memperkenalkan nama (Statistics) dan pengertian ini ke dalam bahasa Inggris. Jadi, statistika secara prinsip mula-mula hanya mengurus data yang dipakai lembaga-lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang berubah setiap saat.<br />Pada abad ke-19 dan awal abad ke-20 statistika mulai banyak menggunakan bidang-bidang dalam matematika, terutama peluang. Cabang statistika yang pada saat ini sangat luas digunakan untuk mendukung metode ilmiah, statistika inferensi, dikembangkan pada paruh kedua abad ke-19 dan awal abad ke-20 oleh Ronald Fisher (peletak dasar statistika inferensi), Karl Pearson (metode regresi linear), dan William Sealey Gosset (meneliti problem sampel berukuran kecil). Penggunaan statistika pada masa sekarang dapat dikatakan telah menyentuh semua bidang ilmu pengetahuan, mulai dari astronomi hingga linguistika. Bidang-bidang ekonomi, biologi dan cabang-cabang terapannya, serta psikologi banyak dipengaruhi oleh statistika dalam metodologinya. Akibatnya lahirlah ilmu-ilmu gabungan seperti ekonometrika, biometrika (atau biostatistika), dan psikometrika.<br />Meskipun ada pihak yang menganggap statistika sebagai cabang dari matematika, tetapi sebagian pihak lainnya menganggap statistika sebagai bidang yang banyak terkait dengan matematika melihat dari sejarah dan aplikasinya. Di Indonesia, kajian statistika sebagian besar masuk dalam fakultas matematika dan ilmu pengetahuan alam, baik di dalam departemen tersendiri maupun tergabung dengan matematika.<br />BAB 2<br />ISI DAN PEMBAHASAN <br />2.1 Pengertian Dasar Statistika <br />Coba kalian perhatikan perilaku para pelayan toko yang sehari- harinya melayani pembeli dan mencatat setiap transaksi yang terjadi. Demikian pula pada saat pelayan tersebut telah selesai dengan tugasnya pada hari itu, dia akan merekap hasil penjualan yang diperolehnya. Misalnya, hari ke-1, pelayan itu mampu mencatat hasil penjualan senilai Rp500.000,00, hari ke-2 Rp550.000,00, hari ke-3 Rp700.000,00, dan seterusnya. <br />Pencatatan itu dilakukan setiap hari hingga pada akhir bulan dia mampu memperoleh kumpulan angka-angka dalam bentuk nominal rupiah. Dari kumpulan angka-angka itu, pelayan toko dapat mengetahui penjualan terendah, penjualan tertinggi, atau rata-rata penjualannya. <br />Statistik dan Statistika <br />Berdasarkan uraian di atas, sebenar- nya pelayan toko itu telah menggunakan statistika untuk menyusun, menge lompokkan, dan menilai suatu kejadian dengan memerhatikan angka-angka yang dia catat. Dengan demikian, kita dapat mengartikan bahwa statistik adalah kumpulan informasi atau keterangan yang berupa angka-angka yang disusun, ditabulasi, dan dikelompok-kelompokkan sehingga dapat memberikan informasi yang berarti mengenai suatu masalah atau gejala. Adapun ilmu tentang cara mengumpulkan, menabulasi, mengelompokan informasi, menganalisis, dan mencari keterangan yang berarti tentang informasi yang berupa angka-angka itu disebut statistika. <br />Populasi dan Sampel <br />Misalnya, seorang peneliti akan mengadakan penelitian tentang mata pelajaran yang paling disenangi oleh siswa-siswa SMA 10. Dalam penelitian itu, populasinya adalah seluruh siswa SMA 10, sedangkan sampel yang diteliti dapat diambil dari beberapa siswa kelas X, kelas XI, atau kelas XII yang dianggap dapat mewakili populasinya. Kesimpulan yang diperoleh dari sampel itu digeneralisasikan pada populasinya. <br />Dari contoh tersebut dapat dikatakan bahwa populasi adalah keseluruhan objek yang akan diteliti, sedangkan sampel adalah sebagian atau keseluruhan populasi yang dianggap mewakili populasinya. <br />Datum dan Data <br />Perhatikan kembali perilaku pelayan toko di atas. Pelayan toko tersebut setiap harinya mencatat hasil rekap penjualan sehingga diperoleh angka-angka Rp500.000,00, Rp550.000,00, Rp700.000,00, dan seterusnya. Hasil rekap pada suatu hari yang dinyatakan dalam bentuk angka, misalnya Rp500.000,00 disebut datum, sedangkan kumpulan hasil rekap pada periode tertentu, misalnya selama satu bulan disebut data. Dengan demikian, kita dapat mengatakan bahwa datum adalah keterangan yang diperoleh dari hasil pengamatan atau penelitian. Kumpulan da- tum-datum itu disebut data. Jadi, bentuk jamak dari datum disebut data. Data yang berupa bilangan disebut data kuantitatif, sedangkan data yang tidak berupa bilangan disebut data kualitatif, misalnya berupa lambang atau sifat. Data kuantitatif dibedakan menjadi dua macam. <br /><ul><li>Data diskret (cacahan), yaitu data yang diperoleh dengan cara mencacah atau menghitungnya, misalnya, data tentang banyak anak dalam keluarga.
  2. 2. Data kontinu (ukuran), yaitu data yang diperoleh dengan cara mengukur, misalnya data tentang luas tanah, data tentang berat badan, dan data tentang tinggi badan. </li></ul>Untuk matematika di SMA, statistika yang kita pelajari adalah statistika deskriptif, yaitu bagian dari statistika yang mempelajari cara mengumpulkan, mengolah, dan menyajikan data dalam bentuk diagram atau kurva. Adapun bagian dari statistika yang mempelajari cara-cara untuk menarik kesimpulan dan membuat ramalan dinamakan statistika inferensial (infe- rential statistics) atau statistika induktif. Statistika inferensial tidak dipelajari di sini, tetapi akan dipelajari di tingkat yang lebih lanjut. <br />2.2 Penyajian Data<br />Suatu data statistik dapat diperoleh di mana saja, bergantung pada maksud dan tujuan penelitian yang dilakukan. Hendaknya, data yang dikumpulkan adalah data yang akurat, terkini (up to date), komprehensif (menyeluruh), dan memiliki kaitan dengan persoalan yang diteliti. Untuk itu, seorang peneliti hendaknya memiliki perencanaan yang baik, agar memperoleh hasil seperti yang diharapkan. Jika seorang peneliti ingin mengumpulkan data yang diperlukan, ada beberapa cara yang dapat ditempuh untuk mendapatkannya, antara lain dengan wawancara, angket atau kuesioner, dan pengamatan atau observasi. <br />Membaca data dalam bentuk tabel dan diagram batang, garis, lingkaran, dan ogive Menyajikan data dalam bentuk tabel dan diagram batang, garis, lingkaran, dan ogive serta penafsirannya Menghitung ukuran pemusatan, ukuran letak, dan ukuran penyebaran data serta penafsirannya<br />Sajian data dalam bentuk diagram garis, diagram lingkaran, dan diagram batang Mengidentifikasi nilai suatu data yang ditampilkan pada tabel dari diagram Ukuran pemusatan rataan, modus, median Ukuran penyebaran, Ukuran penyebaran, jangkauan, jangkauan, simpangan, simpangan, kuartil, kuartil, variansi, variansi, dan dan simpangan simpangan baku<br />Data dalam bentuk diagram batang, garis, lingkaran, dan ogive serta penafsirannya Menafsirkan data dalam bentuk diagram batang, garis, lingkaran, dan ogive Ukuran letak kuartil, desil<br />• • • • • • • <br />diagram lingkaran diagram batang ogive histogram rataan modus median<br />• • • • • • •<br />kuartil desil persentil jangkauan simpangan kuartil variansi simpangan baku Menyajikan Data dalam Bentuk Diagram<br />Statistika adalah cabang dari matematika terapan yang mempunyai cara-cara, maksudnya mengkaji/membahas, mengumpulkan, dan menyusun data, mengolah dan menganalisis data, serta menyajikan data dalam bentuk kurva atau diagram, menarik kesimpulan, menafsirkan parameter, dan menguji hipotesa yang didasarkan pada hasil pengolahan data. Contoh: statistik jumlah lulusan siswa SMA dari tahun ke tahun, statistik jumlah kendaraan yang melewati suatu jalan, statistik perdagangan antara negara-negara di Asia, dan sebagainya. 1. Diagram Garis Penyajian data statistik dengan menggunakan diagram berbentuk garis lurus disebut diagram garis lurus atau diagram garis. Diagram garis biasanya digunakan untuk menyajikan data statistik yang diperoleh berdasarkan pengamatan dari waktu ke waktu secara berurutan. Sumbu X menunjukkan waktu-waktu pengamatan, sedangkan sumbu Y menunjukkan nilai data pengamatan untuk suatu waktu tertentu. Kumpulan waktu dan pengamatan membentuk titik-titik pada bidang XY, selanjutnya kolom dari tiap dua titik yang berdekatan tadi dihubungkan dengan garis lurus sehingga akan diperoleh diagram garis atau grafik garis. Untuk lebih jelasnya, perhatikan contoh soal berikut. Contoh soal Fluktuasi nilai tukar rupiah terhadap dolar AS dari tanggal 18 Februari 2008 sampai dengan tanggal 22 Februari 2008 ditunjukkan oleh tabel sebagai berikut. Tanggal Kurs Beli Kurs Jual 18/2 19/2 20/2 21/2 22/2<br /><ul><li>Rp. 9.091 Rp. 9.093 Rp. 9.128 Rp. 9.181 Rp. 9.185 Rp. 9.220
  3. 3. Rp. 9.123 Rp. 9.129 Rp. 9.215 Rp. 9.221</li></ul>Nyatakan data di atas dalam bentuk diagram garis. Penyelesaian Jika digambar dengan menggunakan diagram garis adalah sebagai berikut. Fluktuasi nilai tukar rupiah terhadap dolar AS<br /><ul><li>9.100 9.200 9.300 9.400 9.500
  4. 4. 9.091 9.093 9.183 9.185
  5. 5. 9.128 9.123 9.129 9.220 9.215 9.221</li></ul>Kurs Beli Kurs Jual<br /><ul><li>18/2
  6. 6. 19/2
  7. 7. 20/2
  8. 8. 21/2
  9. 9. 22/2</li></ul>Diagram Lingkaran Diagram lingkaran adalah penyajian data statistik dengan menggunakan gambar yang berbentuk lingkaran. Bagian-bagian dari daerah lingkaran menunjukkan bagianbagian atau persen dari keseluruhan. Untuk membuat diagram lingkaran, terlebih dahulu ditentukan besarnya persentase tiap objek terhadap keseluruhan data dan besarnya sudut pusat sektor lingkaran. Perhatikan contoh <br />berikut ini. Contoh soal Ranah privat (pengaduan) dari koran Solo Pos pada tanggal 22 Februari 2008 ditunjukkan seperti tabel berikut.<br />No 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.<br />Ranah Privat CPNS/Honda/GTT Perbaikan/pembangunan/gangguan jalan Masalah lingkungan/ kebersihan Kesehatan/PKMS/Askeskin Lalu lintas/penertiban jalan Revitalisasi/budaya Jawa Parkir Pekat/penipuan/preman Persis/olahraga PKL/bangunan liar PLN dan PDAM Provider HP Tayangan TV/radio/koran Lain-lain Jumlah<br />Persentase 5% 9% 6% 3% 6% 20 % 3% 7% 10 % 2% 2% 7% 3% 17 % 100 % <br />Nyatakan data di atas dalam bentuk diagram lingkaran. Penyelesaian Sebelum data pada tabel di atas disajikan dengan diagram lingkaran, terlebih dahulu ditentukan besarnya sudut dalam lingkaran dari data tersebut. 1. 2. 3. 4. 5. 6.<br />5 CPNS/Honda/GTT = 100 × 360° = 18° 9 Perbaikan/pembangunan/gangguan jalan = 100 × 360° = 32,4° 6 Masalah lingkungan/kebersihan = 100 × 360° = 21,6° 3 Kesehatan/PKMS/Askeskin = 100 × 360° = 10,8° 6 Lalu lintas/penertiban jalan = 100 × 360° = 21,6° 20 Revitalisasi/budaya Jawa = 100 × 360° = 72°<br />2.3 Ukuran Pemusatan, Letak Dan Penyebaran Data<br />Merupakan nilai tunggal yang mewakili semua data atau kumpulan pengamatan dimana nilai tersebut menunjukkan pusat data.<br />Yang termasuk ukuran pemusatan :<br />Rata-rata hitung <br />Median<br />Modus<br />Rata-rata ukur <br />Rata-rata harmonis <br />Rata-Rata Hitung<br />Rumus umumnya :<br />Untuk data yang tidak mengulang <br /><ul><li>Untuk data yang mengulang dengan frekuensi tertentu </li></ul>Rata-Rata Hitung <br />Dalam Tabel Distribusi Frekuensi<br />Interval KelasNilai Tengah (X)FrekuensifX9-2122-3435-4748-6061-7374-8687-9915284154678093344812236451121644328041840558Σf = 60ΣfX = 3955<br />Dengan Memakai Kode (U)<br />Interval KelasNilai Tengah (X)UFrekuensifU9-2122-3435-4748-6061-7374-8687-9915284154678093-3-2-10123344812236-9-8-40124618Σf = 60ΣfU = 55<br />Dengan pembobotan <br />Masing-masing data diberi bobot.<br />Misal A memperoleh nilai 65 untuk tugas, 76 untuk mid dan 70 untuk ujian akhir. Bila nilai tugas diberi bobot 2, Mid 3 dan Ujian Akhir 4, maka rata-rata hitungnya adalah :<br /><ul><li>Median</li></ul>Untuk data berkelompok <br />Interval KelasFrekuensi9-2122-3435-4748-6061-7374-8687-99344812236Σf = 60<br />Letak median ada pada data ke 30, yaitu pada interval 61-73, sehingga :<br />L0 = 60,5<br />F = 19<br />f = 12<br /><ul><li>Modus</li></ul>Untuk data berkelompok <br />Interval KelasFrekuensi9-2122-3435-4748-6061-7374-8687-99344812236Σf = 60<br />Data yang paling sering muncul adalah pada interval 74-86, sehingga :<br />L0 = 73,5<br />b1 = 23-12 = 11<br />b2 = 23-6 =17<br />Ada 3 kemungkinan kesimetrian kurva distribusi data :<br />Jika nilai ketiganya hampir sama maka kurva mendekati simetri.<br />Jika Mod<Med<rata-rata hitung, maka kurva miring ke kanan.<br />Jika rata-rata hitung<Med<Mod, maka kurva miring ke kiri.<br />Jika distribusi data tidak simetri, maka terdapat hubungan :<br />Rata-rata hitung-Modus = 3 (Rata-rata hitung-Median)<br />2.4 Kuartil, Desil, Persentil<br /><ul><li>Kuartil </li></ul>Kelompok data yang sudah diurutkan (membesar atau mengecil) dibagi empat bagian yang sama besar. Ada 3 jenis yaitu kuartil pertama (Q1) atau kuartil bawah, kuartil kedua (Q2) atau kuartil tengah, dan kuartil ketiga (Q3) atau kuartil atas<br />Untuk data tidak berkelompok <br />Untuk data berkelompok <br />L0 = batas bawah kelas kuartil <br />F = jumlah frekuensi semua kelas sebelum kelas kuartil Qi <br />f = frekuensi kelas kuartil Qi <br />Interval Kelas Nilai Tengah (X)Frekuensi 9-2122-3435-4748-6061-7374-8687-9915284154678093344812236Σf = 60<br /><ul><li>Q1 membagi data menjadi 25 %
  10. 10. Q2 membagi data menjadi 50 %
  11. 11. Q3 membagi data menjadi 75 %</li></ul>Sehingga :<br /><ul><li>Q1 terletak pada 48-60
  12. 12. Q2 terletak pada 61-73
  13. 13. Q3 terletak pada 74-86</li></ul>Untuk Q1, maka :<br />Untuk Q2, maka : <br />Untuk Q3, maka : <br /><ul><li>Desil </li></ul>Kelompok data yang sudah diurutkan (membesar atau mengecil) dibagi sepuluh bagian yang sama besar.<br />Untuk data tidak berkelompok <br />Untuk data berkelompok <br />L0 = batas bawah kelas desil Di<br />F = jumlah frekuensi semua kelas sebelum kelas desil Di<br />f = frekuensi kelas desil Di<br />Interval Kelas Nilai Tengah (X)Frekuensi9-2122-3435-4748-6061-7374-8687-9915284154678093344812236Σf = 60<br /><ul><li>D3 membagi data 30%
  14. 14. D7 membagi data 70%</li></ul>Sehingga :<br /><ul><li>D3 berada pada 48-60
  15. 15. D7 berada pada 74-86
  16. 16. Persentil </li></ul>Untuk data tidak berkelompok<br />Untuk data berkelompok<br />BAB 3<br />PENUTUP<br />3.1 Kesimpulan <br />Salah satu definisi menyebutkan bahwa statistik adalah metode ilmiah untuk menyusun, meringkas, menyajikan dan menganalisa data, sehingga dapat ditarik suatu kesimpulan yang benar dan dapat dibuat keputusan yang masuk akal berdasarkan data tersebut. <br />Jika suatu kesimpulan data sudah dihimpun, pada statistika deskriptif kita hendak menyimpulkan data itu dalam beberapa hal. Pertama kita hendak membuat tabel, misalnya tabel frekuensi, tabel frekuensi kumulatif dan lain-lain yang mengatur data kasar itu. Juga kita akan melihat diagram atau grafik yang dapat memberi gambaran mengenai keseluruhan data itu, misalnya diagram lambang (piktogram), diagram batang, diagram lingkaran, histogram, ogive dan lain-lain. Kemudian kita hendak menghitung karakteristik data yang dapat mencakup semua data itu, misalnya rata-rata, median, modus dan lain-lain.<br />DAFTAR PUSTAKA<br />http://www.google.co.id/webhp?hl=id&source=hp&btnG=Penelusuran+Google#hl=id&source=hp&biw=1600&bih=685&q=statistika+matematika&aq=1&aqi=g10&aql=&oq=statistika+&gs_rfai=&fp=2121f2a943437206<br />http://www.docstoc.com/docs/53219519/Matematika-SMA-Statistika<br />http://id.wikipedia.org/wiki/Statistika<br />http://kambing.ui.ac.id/bebas/v12/sponsor/Sponsor-Pendamping/Praweda/Matematika/0400%20Mat%202-3a.htm<br />

×