Life Cycle Assessment of Footwear for Simple Shoes


Published on

Final Report for Master\'s Thesis at the Donald Bren School of Environmental Science and Management. Co-Authors: Jennifer Miller and Kyle Albers

Published in: Lifestyle, Business
No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • Life Cycle Assessment of Footwear for Simple Shoes

    1. 1. A Lifecycle Assessment of the Supply Chain and Evaluation of End-of-Life Management Options Wednesday, April 2, 2008
    2. 2. Project Significance Increase in shoe = Increase in environmental production/consumption impacts (production/disposal) Number of shoes produced world-wide in 2004 12 billion pairs Projected world- wide production by 2010 20 billion pairs Average pair of shoes owned per person in the U.S. 10 pairs Total U.S footwear sales, 2005 $42 billion United States footwear consumption 2005 1.4 billion pairs Average amount of shoes disposed in landfill per year ~ 104 million pairs
    3. 3. What’s in a Typical Shoe PET EVA Adhesives Nylon 6 Virgin Rubber Conventional Cotton Metal Eyelet Leather
    4. 4. Simple Shoes
    5. 5. The $64,000 Question <ul><li>Is a green toe shoe “ simply ” </li></ul><ul><li>better in terms of environmental performance than their other footwear products? </li></ul>
    6. 6. Project Objectives <ul><li>Quantify and Compare the environmental impacts of the four shoes selected: shoes 1, shoe 2, shoe 3, shoe 4 </li></ul><ul><li>2) Assess supply chain via a life cycle approach for opportunities to improve environmental performance and increase efficiency </li></ul><ul><li>3) Generate End-of-Life Management options that are feasible and environmentally beneficial. </li></ul><ul><li>4) Present a final recommendation to Simple Shoes based on LCA and environmental and economic analysis </li></ul>
    7. 7. Methodology and Approach <ul><li>Literature Review </li></ul><ul><li>Data Collection </li></ul><ul><ul><li>material composition and weight </li></ul></ul><ul><ul><li>manufacturing process </li></ul></ul><ul><ul><li>cost & energy information </li></ul></ul><ul><ul><li>distribution networks </li></ul></ul><ul><ul><li>discussions with client </li></ul></ul><ul><li>Analysis </li></ul><ul><ul><li>Perform LCA for four shoes </li></ul></ul><ul><ul><li>Determine phases and materials responsible for environmental impacts </li></ul></ul><ul><ul><li>Evaluate Supply Chain based on LCA results </li></ul></ul><ul><ul><li>Focused analysis on End-of-Life options </li></ul></ul><ul><li>Provide recommendations to Simple Shoes </li></ul>
    8. 8. The Four Products Shoe 1 GREEN TOE Shoe 2 GREEN TOE Shoe 3 ecoSNEAKS Shoe 4 Conventional Sneaker
    9. 9. What’s in a Simple Shoe? Vamp/ Upper Laces & Tongue Sock Liner Heel Outsole Midsole Insole
    10. 10. Natural Latex 34% Crepe 38% PET 4% Bamboo 4% Cotton 4% Hemp 17% Percentage of Materials by Weight Shoe 1 Green Toe
    11. 11. Virgin Rubber 32 % Recycled Car Tire 29 % Organic Cotton 7% EVA 5% PET 11% Nickel 2% Latex 5 % Hemp 14% Shoe 3 ecoSNEAKS Percentage of Materials by Weight
    12. 12. Cotton 16% Cow Suede 15% EVA 5% Jute 1% Virgin Rubber 55% Misc. 4% Nickel 1% PU Foam 1% Percentage of Materials by Weight Shoe 4 Conventional Shoe
    13. 13. Manufacturing a Simple Shoe Cutting Stitching Gluing Finishing Packaging Stages of Assembly
    14. 15. Why Life Cycle Assessment? <ul><li>LCA is a systematic approach to measuring the environmental performance of products </li></ul><ul><li>LCA compiles and evaluates the inputs and outputs of a product across its life cycle </li></ul><ul><li>LCA creates added value through product “ecolabeling”, marketing initiatives, and product comparisons </li></ul><ul><ul><li>Software Package: GaBi 4.0, PE International </li></ul></ul>
    15. 16. Building our LCA <ul><li>Goal </li></ul><ul><ul><li>Compare the environmental performance of four of Simple’s shoes </li></ul></ul><ul><li>Scope </li></ul><ul><ul><li>Functional unit : The amount of material </li></ul></ul><ul><ul><li>required to cover and protect two sample sized feet </li></ul></ul><ul><ul><ul><ul><li>Men = US Size 9 </li></ul></ul></ul></ul><ul><ul><ul><ul><li>Women = US Size 7 </li></ul></ul></ul></ul><ul><ul><li>Reference flows: Amount of materials for one pair of shoes </li></ul></ul><ul><ul><li>System Boundaries </li></ul></ul><ul><li>Assumptions & Limitations </li></ul><ul><ul><li>Materials, End-of-Life, Transportation, and Packaging </li></ul></ul>
    16. 17. Shoe Assembly Material Production Packaging Transportation Disposal
    17. 18. Environmental Impact Categories <ul><li>Selected 10 Environmental Impact Categories </li></ul><ul><ul><li>Based on 2001 Data </li></ul></ul><ul><ul><li>Peer Reviewed </li></ul></ul><ul><ul><li>CML 2001 Methodology - Developed at Leiden University Institute of Environmental Sciences </li></ul></ul>Radioactive Radiation Ozone Layer Depletion Potential Photochemical Ozone Creation Potential Global Warming Potential Human Toxicity Potential Freshwater Toxicity Potential Terrestrial Toxicity Potential Eutrophication Potential Marine Aquatic Toxicity Potential Acidification Potential DALY Kg ethane-eq Kg DCB-eq Kg CO2-eq. Kg R-11-eq. Kg SO2-eq. Kg phosphate-eq.
    18. 21. Life Cycle Assessment Interpretation Environmental Impact Categories Shoe Styles AP [kg SO2-Equiv.] EP [kg P-Equiv] FAETP [kg DCB-Equiv.] GWP [kg CO2-Equiv.] HTP [kg DCB-Equiv.] Shoe 1 0.0171 0.0033 0.0402 1.672 8.482 Shoe 3 0.0092 0.0015 0.0414 1.808 10.469 Shoe 4 0.0695 0.0179 0.1623 7.51 41.03   Shoe Styles ODP [kg R11-Equiv.] POCP [kg Ethene-Equiv.] RAD [DALY] TEPT [kg DCB-Equiv.] MAETP [kg DCB-Equiv.] Shoe 1 1.48E-06 3.99E-03 1.40E-08 39.42 140.25 Shoe 3 7.10E-07 1.12E-0 3 1.54E-08 48.51 266.61 Shoe 4 7.59E-07 1.68E-03 1.95E-08 190.96 796.12
    19. 22. In “Simpler” Terms Shoe Style GWP is Equivalent to driving a Car (19mpg) for… GWP is Equivalent to powering a 60W Light Bulb for… How about mileage for the world projection of shoe production… Shoe 1 3.9 mi 29 hrs ~70 Billion Miles Shoe 3 4.2 mi 31 hrs ~84 Billion Miles Shoe 4 17.4 mi 129 hrs ~300 Billion Miles
    20. 23. Methodology for identifying opportunities to “ green ” the existing supply chain <ul><li>Use LCA results to examine specific phases of the supply chain in detail: </li></ul><ul><ul><li>Compared the environmental performance of individual materials on a kg-to-kg basis </li></ul></ul><ul><ul><li>Identified “hot spots” along the supply chain based on increased environmental performance and supply chain control </li></ul></ul><ul><ul><li>Co-evaluated the environmental performance of materials and their relative economic cost on a kg-to-kg basis </li></ul></ul>
    21. 24. Analyzing the Supply Chain Existing vs. Extended Raw Materials Extraction Primary Materials Production Component Manufacture Finished Product Assembly Product Sale and Delivery Product Use Product Disposal Supply Loop? Existing Supply Chain Extended Supply Chain
    22. 25. Analyzing the Supply Chain “Greening” the Supply Chain through Materials Substitution
    23. 26. Analyzing the Supply Chain “Greening” the Supply Chain through Materials Substitution Material Amount (MJ) Crepe Rubber 0.30 Hemp 2.44 Organic Cotton 16.18 Ethylene Vinyl Acetate (EVA) 16.57 Cotton 18.77 Polyethylene Terephthalate (PET) 22.77 Polyurethane (PU) Foam 27.63 Silicon Rubber 47.25 Nylon 6 55.59 Leather 56.95 Source: PE International (GaBi 4.0) Extended DB
    24. 27. Analyzing the Supply Chain Targeted Actions - Results <ul><li>Identified three “hot spots” along the supply chain where environmental performance is poor and Simple has a moderate-high degree of control over this actor/process? </li></ul><ul><ul><li>1. Composition of Shoes (Material Dependent/Absolute) </li></ul></ul><ul><ul><li>2. Footwear Manufacturing Process (Moderate/High) </li></ul></ul><ul><ul><li>3. End of Life Management (Poor/Moderate) </li></ul></ul>
    25. 28. Assessment of the Economic and Environmental Benefits of Materials Substitution Original Material – Shoe 4 Alternative Material – Shoe 1 Environmental Impact 1 Economic Cost 2 Laces Cotton Organic Cotton Jute Outsole Rubber Crepe Rubber Retreaded Car Tires Midsole EVA Wool Felt Cork No Data Recycled PET Insole/Liner Cotton Bamboo Upper Suede Hemp Jute Wool Felt Adhesives Chemical-Based Adhesives (Phenol/Urea) Water-Based Adhesives
    26. 29. End-of-Life Evaluation: Methodology <ul><li>Performed literature review and discussed EoL options with client </li></ul><ul><li>Estimated shipping distances and energy used for EoL options </li></ul><ul><li>Used LCA software to calculate GWP (kg CO2 eq.) for each step within EoL options </li></ul>
    27. 30. End-of-Life Evaluation: Collection Options <ul><li>Drop-off box </li></ul><ul><li>Mail-in </li></ul>2900 km 2900 km 10 km 2.68 kg CO2 eq. 0.08 kg CO2 eq. 0.08 kg CO2 eq.
    28. 31. End-of-Life Evaluation: Four End-of-Life Options <ul><li>Reuse – EoL shoes donated to Soles4Souls for impoverished countries and disaster victims . </li></ul><ul><li>Recycle – EoL shoes disassembled and recycled by material. </li></ul><ul><li>Grind – EoL shoes sent to Nike’s Reuse-a-Shoe program to be ground up and used in athletic surfaces. </li></ul><ul><li>Compost – Customers </li></ul><ul><li>encouraged to put compost decomposable shoe components. </li></ul>End-of-life Options compared to Landfilling Current Practice - Landfill – Positive GWP due to anaerobic emission of methane. Additional environmental Impacts including air and groundwater pollution (GWP = 0.27 kg CO2 eq.)   Net GWP (kg. CO 2 eq.) (pair of shoes) Feasibility supply chain steps shipping distance (km) take-back Reuse 0.17 1 426 yes Recycling .94 2 16000 yes Grinding -1.48 1 1535 yes Composting -0.27 0 0 no
    29. 32. Composting The “ Simple ” Option <ul><li>Avoids Landfill </li></ul><ul><li>Decreased GWP </li></ul><ul><li>compared to </li></ul><ul><li>current End-of-Life strategy </li></ul><ul><li>No disassembly, </li></ul><ul><li>transportation, labor, prepaid </li></ul><ul><li>postage or customer incentives </li></ul><ul><li>The </li></ul><ul><li>implementation </li></ul><ul><li>of a take-back </li></ul><ul><li>mechanism can be </li></ul><ul><li>costly & time consuming </li></ul><ul><li>No way to ensure </li></ul><ul><li>consumer participation </li></ul><ul><li>Shoes </li></ul><ul><li>redesigned </li></ul><ul><li>to be 100% </li></ul><ul><li>biodegradable </li></ul><ul><li>Removal of non- </li></ul><ul><li>biodegradable materials: </li></ul><ul><li>PET, EVA, PU Foam, </li></ul><ul><li>Nylon & Rubber </li></ul><ul><ul><li>Print composting guidelines </li></ul></ul><ul><ul><li>and instructions on shoe box </li></ul></ul>Benefits No Take-Back <ul><ul><li>Redesign </li></ul></ul><ul><ul><li>Requirements </li></ul></ul>
    30. 33. Conclusions <ul><li>Is a green toe shoe “ simply ” better in terms of environmental performance than their other footwear products, based on the scope of analysis? </li></ul><ul><li>YES </li></ul><ul><li>Green Toe shoe (1) has a lower impact in 8 of the 10 environmental impact than the conventional shoe (4) </li></ul><ul><li>The Green Toe shoe performed best across the two most significant impact categories: Toxicity and GWP. These represent the largest fraction of global emissions across the impact categories </li></ul><ul><li>The only difference in the supply chains of the Green Toe and the conventional shoes is the material choices and the materials production phase has the greatest impact </li></ul><ul><li>Green Toe requires the least redesign for composting which is the recommended EoL option </li></ul>
    31. 34. Acknowledgements <ul><li>John Melack, Bren School </li></ul><ul><li>Patricia Holden, Bren School </li></ul><ul><li>Roland Geyer, Bren School </li></ul><ul><li>Vered Doctori Blass, Bren School </li></ul><ul><li>Monica DeVreese, Simple Shoes, Inc. </li></ul><ul><li>Greg Nielsen, Simple Shoes, Inc. </li></ul><ul><li>Michael Brown, Brown & Associates </li></ul><ul><li>Marc Binder, PE International </li></ul>
    32. 35. Questions?