2013-04-17: The Promise, Current State, And Future of Personalized Medicine

1,656 views

Published on

By Jeff Otto

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,656
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
79
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

2013-04-17: The Promise, Current State, And Future of Personalized Medicine

  1. 1. The promise, current state, andfuture of personalized medicineJeffrey M. Otto, PhD MBA National Director, CHI’s Center for Translational Research April 17, 2013
  2. 2. Overview§  Intro to personalized medicine §  Short look at the early days, circa2000-2001 §  Review of current state §  Discussion of the gap between the initialpromise and the current state §  The CTR’s approach §  Summary and conclusion
  3. 3. Definitions§  Personalized medicine: the tailoring of medical treatment tothe individual characteristics of each patient in order to classifyindividuals into subpopulations that differ in their susceptibilityto a particular disease or their response to a specific treatment. Preventative or therapeutic interventions can then beconcentrated on those who will benefit, sparing expense and sideeffects for those who will not. §  Biomarkers: An indicator or pattern in a patient that reflectsnormal biologic processes, disease processes, or the effect ofmedical treatment. §  Translational Research: Translational research transformsscientific discoveries arising from laboratory, clinical, orpopulation studies into clinical applications to reduce diseaseincidence, morbidity, and mortality.
  4. 4. Personalized Medicine 101The Promise §  Better diagnoses and earlier interventions §  More efficient drug development §  More effective therapies The Challenges §  Intellectual property §  Regulatory oversight §  Reimbursement Retrieved 03/28/2013 fromhttp://www.personalizedmedicinecoalition.org/about/about-personalized-medicine
  5. 5. The ClassicPersonalized Medicine ParadigmToxic   Not  Toxic  Effec%ve  Not  Effec%ve  The standard approach to medicine does not distinguish between individuals…. …although individuals within a population are often very different. Biomarkers can be used to stratify patients… …and to select a safer, more efficacious treatment for the individual.
  6. 6. Personalized medicine is akin to shoemanufacturing:Like shoes at a department store, manydifferent drugs are available. Althoughseveral drugs may be available to treata particular disease, all drugs are notsafe or effective for all people.Similar to sizing for a shoe,molecular diagnostic testsinform the selection of theappropriate drug.Although the selected drugwas not createdspecifically for you, it ismore likely to work for you.
  7. 7. Biomarkers currently usedin clinical medicine§  Electrocardiogram §  PET brain image §  Bone densitometricmeasurement §  Serum chemistries §  Auto-antigens in blood §  Pulmonary function test §  X-ray §  MRI
  8. 8. Examples of -Omic Biomarkers§  DNA variation q  SNPs, rearrangements,CNVs §  DNA methylation §  Chromosomalrearrangements §  microRNA §  RNA expression §  Protein panels
  9. 9. The beginning of “irrationalexuberance” in personalized medicine
  10. 10. June  11,  2001    "We  strongly  believe  that  pharmacogenomics  will  shortly  transform  the  way  drugs  are  developed,  marketed,  and  prescribed.  I  think  youre  going  to  see  the  benefits  of  this  appearing  within  a  five-­‐year  %meframe,"      Gerald  F.  Vovis    SVP  &  Chief  Technology  Officer  of  Genaissance  Pharmaceu%cals  
  11. 11. The Challenge of “chasing the tail”§  Statistically significantresults are easier toachieve betweenpopulations at the leftand right ends of thediagram, but are notnecessarily meaningfulfrom a health economicsperspective Treatment efficacyFrequencyinpopulation
  12. 12. Genomic medicine milestones1953:  Structure  of  DNA  elucidated  by  Watson  &  Crick  1950 19601956:  1st  discovery  of  a  gene%c  basis  for  selec%ve  toxicity  (primaquine  –  an%malarial  drug)  19701977:  DNA  sequencing  technology  developed  by  Fred  Sanger  1977:  Discovery  of  CYP450  metabolic  enzymes  -­‐  varia%on  in  these  enzymes  significantly  influence  the  effec%ve  dose  of  a  drug  19801994:  EGFR  TKI  cla19901990:  The  Human  Genome  Project  is  launched  20001998:  HHER2+  m1998:  1sHercep-­‐Milestones  Research  Drugs  Diagnos?c  Drug  +  CDx  Regulatory  
  13. 13. Overview of Targeted Cancer TherapiesManchana, T., Ittiwut, C., Mutirangura, A., & Kavanagh, J. J. (2010). Targeted therapies for rare gynaecological cancers. LancetOncol, 11(7), 685-693. doi: http://dx.doi.org/10.1016/S1470-2045(09)70368-7
  14. 14. Why so few success stories?§  Genomic era of medicine isless than 15 yrs old §  Technology is notsufficient on its own §  Biomarkers are notnecessarily “fit forpurpose” §  Test needs to work withinthe existing healthcareworkflow §  Stakeholder alignment §  Is the patient the customer? Cartoon: Agres, Ted. (2009) The hunt for personalization. Retrieved 03/08/2013 fromhttp://www.dddmag.com/articles/2009/06/hunt-personalization
  15. 15. Catholic Health Initiatives &The Center for Translational Research
  16. 16. CHI: 5th Largest Hospital Network in USStrength in Numbers§  5th largest US network§  81 acute care hospitals in 17 states§  40 LTC facilities§  86,000 employees§  2,900 physicians and midlevel providers§  Diverse markets with 90% ranked #1 or #2§  $15B in assets, $9.8B in annual revenue§  FY 2012 – provided $715M+ in charity care16
  17. 17. CIRI OverviewCenter  for  Transla%onal  Research  (CTR)  • Discovery  Research  Network  na%onal  biospecimen    collec%on  &  repository  with  EHR  connec%vity  • Biomarker  discovery,  molecular  diagnos%c  development  &  valida%on    Center  for  Clinical  Research  (CCR)  • Ownership  and  management  of  • Research/clinical  trial  opera%ons:  single  site,  mul%-­‐site,  mul%-­‐therapeu%c    • Research  data  warehouse  connected  to  EHR  and  de-­‐iden%fied  pa%ent  data/outcomes    Center  for  Healthcare  Innova%on  (CHCI)  • Design  and  test  innova%ons  in  care  delivery  • Co-­‐develop  new  technology  and  methods  to  manage  popula%on  health      17 Personalized  Medicine  Clinical  Opera%ons  +  EHR  Research  Environment  Popula%on  Health  Management  
  18. 18. Executive Summary:The CHI/CIRI Research “Onion”18 CCR  CTR  CHCI  CIRI  Hospitals  Government  Academia  Industry  Lab  Pharmacy  Radiology  Tumor  Registry  Pathology  
  19. 19. Cloud-based Informatics:Network StrengthResearch  Datamart  CCR   CTR  Research  Data  Analysis  19
  20. 20. Cloud-based informatics:Patient Data & Sample AnnotationHospital  Network  Digital  Slide  Images  (QC)  Staging  –  pTNM,  cTNM  Images  Radiology  Reports  Genomic  Data  Blood  Report  Demographics  Clinical  History  Epidemiology  Drugs  Interac%ons/Adverse  Events  Consent  &  IRB  Approval  Pre-­‐Sampling  Ischemic  dura%on    Chain  of  Custody  Anesthesia  outcomes  Lab  Radiology  ADT*  Tumor  Registry  Pharmacy  Pathology  Post-­‐Sampling  Time  to  freeze  samples  Type  and  %me  of  fixa%ve  Tissue  QC  ELECTRONIC  HEALTH  RECORD   BIOREPOSITORY  NETWORK  Drug  and  Biomarker  Discovery  Protocol  De-Identified Data WarehouseBiospecimenVariablesTissue ReportAnesthesiaIschemic TimeTime to FreezeTumor StagingDiagnosis% Tumor% NecrosisImage Data DemographicsMRIPET/CT ScanImage ReportAgeRaceGene ExpressionProfilingGenotype/Sequence DataAffy Human GenomeExpression ArrayEGFRKRASFollow Up Data TreatmentTreatment OutcomeRecurrenceDisease StatusDrugsRadiationResponse      Pre-­‐Acquisi%on  Variables                    Post-­‐Acquisi%on  Variables  *Admission/Discharge/Transfer  TRANSLATIONAL  INFORMATICS  
  21. 21. Bench to Bedside Translational ResearchCTR  CCR  Benefits  to  CHI  Hospitals  Clinical  Trials  Personalized  Medicine  Benefits  to  Pa%ents  Bener  Drugs  Bener  Diagnos%cs  Research  Ques?ons  Hypothesis  Generated  Hypothesis  Tested  Results:    IP  &  Publica?ons  Generated  Benefits  Research  Data  21 Key  Opinion  Leaders  Physicians  Academic  Researchers  CIRI  Staff  Others  21
  22. 22. Study Design: An Integrated ApproachFFPE  Sample  EHR  data  Biosta%s%cal  Analysis  Predic%ve  Signature  Gene%c  Epigene%c  Environmental  22
  23. 23. Thank You

×