Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Biomaterials: de la selecció al disseny / IBEC, Josep A. Planell

1,035 views

Published on

Dr. Josep A. Planell, director – Institut de Bioenginyeria de Catalunya (IBEC)

Published in: Health & Medicine
  • Be the first to comment

  • Be the first to like this

Biomaterials: de la selecció al disseny / IBEC, Josep A. Planell

  1. 1. BIOMATERIALS: DE LA SELECCIÓ  AL DISSENY Josep A. Planell Institute for Bioengineering of Catalonia (IBEC)Institute for Bioengineering of Catalonia (IBEC), CIBER-Bioengineering, Biomaterials and Nanomedicine (CIBER_BBN) Technical University of Catalonia (UPC) – Barcelona, Spain
  2. 2. linking research, technology and life www.ibecbarcelona.eu
  3. 3. Engineering the body - History 484 BC: The Histories by Herodotusy Hegesistratus, a Persian soldier, was imprisoned by the enemy. In order to escape from the stocks, he cut off part of his own foot and later wore a wooden replacement. 300 BC: Oldest known prostheses Roman artificial leg
  4. 4. Biomaterials: used from beginning of civilizationiomaterials: used from beginning of civili ation Certain materials non related with  the human body, under certain  circumstances can be tolerated, or at  least do not produce acute adverse  “Kennewick Man”  (Washington), 9000 years  old and a spear pointp reactions that produce irreparable  damage to their host tissues old and a spear point  embedded in his hip Body’s capacity to deal with  implanted foreign materials
  5. 5. EVOLUTION OF MATERIALS XXth Century: Development of the most  relevant materials for medical applications Metals and alloys: Stainless steels cobalt‐chrome alloyscobalt‐chrome alloys titanium and titanium alloys other: magnesium, tantalum, niobium Ceramics: Technological ceramics (alumina and zirconia) Calcium phosphates Polymers:  synthetic origin, derived from mineral oily y g , Advances in processing and manufacturing technologies New composites 
  6. 6. EVOLUTION OF MATERIALS 1950’s two phenomena will decide  the technological evolution of t e tec o og ca e o ut o o humanity (specially in the field of  new  materials: Cold War Research and development  fCold War of new weapons Neither available technology nor available materials  Space Race were adequate and advances had to take place in all  fields: mechanics, welding, new materials resistant  to heat and materials resistant to low temperatures, p , abrasion, new plastics, light alloys, new electronic  elements, chips, new computing systems, etc.
  7. 7. BIOMATERIALS Most of XXth Century: Biomaterials were selected among existing  materials for other industrial applications Surgeon –Hero:  He designed the first implants looking for materials in  the chemical, energy, mechanical or aerospatial  industries (Sir John Charnley, Sir Harold Ridley, Arthur Vorhees)  Criteria for selection of biomaterials in the design of implants:Criteria for selection of biomaterials in the design of implants:  Mechanical and corrosion resistance  Lightness if possible Lightness if possible  Availability in different shapes allowing choice for machining and processing  Easy to sterilize When Biomaterials Science and Technololgy was just starting, Biomaterials were  nothing else than industrial materials exhibiting the specific properties of being  as inert as possible in order to be as harmless as possible upon implantationp p p p
  8. 8. BIOMATERIAL (1991) A material intended to interface with bi l i l t t l t t tbiological systems to evaluate, treat, augment or replace any tissue, organ or function of the body
  9. 9. BIOMATERIAL HOST BODY INTERACTIONS The biomaterial triggers a biological response from the host body The host body degrades the biomaterialThe host body degrades the biomaterial  The degradation products elicit a biological response from the host body
  10. 10. PHYSIOLOGICAL ENVIRONMENT Homeostasis  (local –global) Equilibrium conditionsEquilibrium conditions  Chemical (aggressive)( gg ) Physical (non mechanical) Biological (Inflammation)
  11. 11. BIOCOMPATIBILITY (1986) Ability of a material to perform with an appropriate host response in a specific application.
  12. 12. STANDARDS AND REGULATIONS Consensus standards are documents theta have been developed by committees to  represent a consensus opinion on test methods, materials, devices or procedures. The application of biomaterials to medical devices is regulated according to the  intended use of the product incorporating the material and the relative risk of the useintended use of the product incorporating the material and the relative risk of the use  of the materials. These regulations may be as a result of direct laws or regulations and  usually take the form of requirements to comply with voluntary or mandatory  certifications to recognized standards or norms. After a new product has cleared the g p requirements (which restrict marketing until complete), continuing compliance  requirements attempt to ensure quality of the finished device. Typical biomaterial regulatory control follows one or more of the following types: 1 Guidance documents or device specific requirements1. Guidance documents or device specific requirements 2. Adoption by reference to international standards for materials and test requirements 3. Requirements for validation and verification of material performance within the device 4 Manufacturing and purchasing controls to ensure continued quality and performance4. Manufacturing and purchasing controls to ensure continued quality and performance
  13. 13. HISTORY OF BIOMATERIALS • First Generation Biomaterials: materials used industrially in• First Generation Biomaterials: materials used industrially in other applications that are requested to be inert in the human body environment. “Biocompatibility” tests. • Second Generation Biomaterials: designed to be bioactive d b bland resorbable. Third Generation Biomaterials b combining these t o• Third Generation Biomaterials: by combining these two properties, they are being designed to stimulate specific cellular responses at the molecular level in order to help thep p body to heal itself.
  14. 14. Lessons from Natural Tissue H. Fernandes, L. Moroni, C. van Blitterswijk, J. de Boer, J. Mat. Chem. 2009, 19, 5475-5484.
  15. 15. What is Regenerative Medicine? Regenerative medicine is a broad concept to define those innovative medical therapies that will enable the bod to repair replacebody to repair, replace, restore and regenerate damaged or diseased cellsdamaged or diseased cells, tissues and organs.
  16. 16. Engineering the body – The future? REGENERATIVE MEDICINE
  17. 17. 41
  18. 18. TISSUE ENGINEERING PROCEDURE Cell isolationCell isolation Cell ProliferationCell ProliferationCell harvestCell harvest Cell seeding onCell seeding on Proliferation or/andProliferation or/and differentiation in optimaldifferentiation in optimalFilling of the bone defectFilling of the bone defect scaffoldsscaffolds differentiation in optimaldifferentiation in optimal conditionsconditions Filling of the bone defectFilling of the bone defect
  19. 19. Tissue Engineering (TE) Principle CELLS Stem- or progenitor cells SCAFFOLD S G SSCAFFOLD Synthetic biomaterial SIGNALS Autocrine or added Bone graft BMPs, other GFs
  20. 20. ARE THESE STATEMENTS, VALID IN MOST INDUSTRIAL FIELDS,  STILL VALID FOR BIOMATERIALS?  A (bio)material is not a device  A device may contain different (bio)materials  A (bio)material may be used in different devices for different applications No straightforward answer, however, like ECM, biomaterials will h t d t /i d (t it/t d ?) bi h i l d  A (bio)material may be used in different devices for different applications have to respond to/induce (transmit/transduce?) biochemical and biophysical(mechanical) stimuli/signals What should be the material design criteria in order to satisfy in a quantitative manner the combined stimuli/signals?
  21. 21. Biomaterials: • Can we generate these signals?Can we generate these signals? • Surface energy, topography, wetability, surface charges, … • Soluble factorsSoluble factors. • Functionalize surfaces with specific signals. The Biomaterials have now to be designed to generate  specific signals to cells in order to guide their behaviour.  They cannot be selected from a list of available  materials meant for other industrial applications.

×