Successfully reported this slideshow.
Upcoming SlideShare
×

# Lecture7 data structure(tree)

2,841 views

Published on

Binary trees
Binary search trees
AVL trees
B trees
Applications

Published in: Technology
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

### Lecture7 data structure(tree)

1. 1. Lecture 7 Tree (Data Structure) Abdisalam Issa-Salwe Taibah University College of Computer Science & Engineering Computer Science DepartmentOutline Binary trees Binary search trees AVL trees B trees Applications 2 1
2. 2. Tree ADT A tree is a collection (may be empty) of nodes, containing: a distinguished node called the root r, zero or more non-empty subtrees T1, T2, …, Tk, A directed edge from the root r to the root of each subtree. root T2 … T1 Tk 3Terminologies parent root children siblingssubtrees grandchildren 4 2
3. 3. Terminologies ancestor pathlength of path depth length of path from the root descendant 5Terminologiesheight 6 3
4. 4. Tree: Implementationclass TreeNode{ Object element; TreeNode firstChild; TreeNode nextSibling;} nextSibling=null nextSibling=null nextsibling firstChild=null firstChild=null nextSibling=null firstChild=null firstChild=null 7Binary Trees A tree in which no node can have more than 2 children. 8 4
5. 5. Binary Tree: ImplementationClass BinaryNode{ 3 Object element; BinaryNode left; BinaryNode right;} 5 node.element=3 node.left=node node.right=node 9node.element=9 node.element=5node.left=null node.left=nodenode.right=null node.right=null 9Binary Tree: Implementationclass BinaryNode{ // ConstructorsBinaryNode ( Comparable theElement ){ this ( theElement, null, null); }BinaryNode(Comparable theElement, BinaryNode lt, BinaryNode rt){ element = theElement; left = lt; right = rt; }// Friendly data; accessible by other package routines Comparable element; // The data in the node BinaryNode left; // Left child BinaryNode right; // Right child 10} 5
6. 6. Binary Search TreesProperties of a binary search tree T1. T is a binary tree.2. For each node n in T, whose left subtree is Tl and right subtree is Tr, • the item in each node in Tl is smaller than the item in n. • the item in each node in Tr is larger than the item in n. 11Example 8 3 11 2 4 9 12 1 6 5 7 12 6
7. 7. Binary Search Treespublic class BinarySearchTree{ public BinarySearchTree( ) { root = null; } public void insert( Comparable x ) { root = insert( x, root ); } public void remove( Comparable x ) { root = remove( x, root ); } public Comparable find( Comparable x ) { return elementAt( find( x, root ) ); } public void makeEmpty( ) { root = null; } ... private BinaryNode root; } 13FIND 8Find 6 < 3 11 > 2 4 9 12 > 1 6 5 7 14 7
8. 8. Method findprivate BinaryNode find ( Comparable x, BinaryNode t ){ if( t == null ) return null; if( x.compareTo( t.element ) < 0 ) return find( x, t.left ); else if( x.compareTo( t.element ) > 0 ) return find( x, t.right ); else return t; // Match} 15INSERT 10 8Insert 10 > 3 11 < 2 4 9 12 1 6 10 5 7 16 8
9. 9. Method insertprivate BinaryNode insert ( Comparable x, BinaryNode t ){ if( t == null ) t = new BinaryNode( x, null, null ); else if( x.compareTo( t.element ) < 0 ) t.left = insert( x, t.left ); else if( x.compareTo( t.element ) > 0 ) t.right = insert( x, t.right ); else ; // Duplicate; do nothing return t;} 17FindMax, FindMin 8 3 11 2 4 9 12 max min 1 6 5 7 18 9
10. 10. Methods findMin & findMaxprivate BinaryNode findMin( BinaryNode t ){ if( t == null ) return null; else if( t.left == null ) return t; return findMin( t.left );} private BinaryNode findMax( BinaryNode t ){ if( t != null ) while( t.right != null ) t = t.right; return t;} 19REMOVERemove 7 11 3 13 2 7 12 14 1 5 9 4 6 10 20 10
11. 11. REMOVERemove 7 11 3 13 2 7 12 14 1 9 8 10 21REMOVERemove 7 11 3 13 2 7 12 14 1 5 4 6 22 11
12. 12. Method Removeprivate BinaryNode remove(Comparable x,BinaryNode t){ if(t == null) return t; // Item not found;do nothing if( x.compareTo(t.element) < 0 ) t.left = remove(x, t.left); else if ( x.compareTo(t.element) > 0 ) t.right = remove(x, t.right); else if (t.left!=null && t.right!=null) // 2 child { t.element = findMin(t.right).element; t.right = remove(t.element, t.right); } else t = (t.left != null) ? t.left : t.right; return t;} 23 AVL Trees An AVL tree is a binary search tree with a balance condition. A self-balancing binary search tree. AVL tree is named after G.M. Adelson- Velskii and E.M. Landis. Balance condition For every node in the tree, the height of the left & right subtrees can differ by at most 1. 24 12
13. 13. AVL Trees (cont…) The balance factor of a node is the height of its left subtree minus the height of its right subtree (sometimes opposite) and a node with balance factor 1, 0, or −1 is considered balanced. A node with any other balance factor is considered unbalanced and requires rebalancing the tree. The balance factor is either stored directly at each node or computed from the heights of the subtrees. 25AVL Trees 11 11 3 13 3 13 2 7 12 14 2 7 12 141 5 8 1 5 not AVL tree AVL tree 4 6 26 13
14. 14. Single Right Rotation k2 k1 k1 Zh k2 Yh Xh+1 Yh Zh Xh+1 27Single Left Rotation k2 k1 k1 Xh k2 Yh Zh+1 Zh+1 Xh Yh 28 14
15. 15. Height of AVL TreeIf N is the number of nodes in an AVL tree, the heightof the tree, h(N), is approximately 1.44 log(N+2)-.328. 29 Inorder Traversal +(a – (b * (c / d))) + (e – f) - - a * e f b / c d 30 15
16. 16. Method inorderpublic static void inorder (BinaryNode t){ if ( t!=null ) { inorder(t.left); System.out.println(t.element); inorder(t.right); }} 31Preorder Traversal ++ – a*b/cd–ef - - a * e f b / c d 32 16
17. 17. Method preorderpublic static void preorder (BinaryNode t){ if ( t!=null ) { System.out.println(t.element); inorder(t.left); inorder(t.right); }} 33Postorder Traversal +abcd/*–ef–+ - - a * e f b / c d 34 17
18. 18. Method postorderpublic static void postorder (BinaryNode t){ if ( t!=null ) { inorder(t.left); inorder(t.right); System.out.println(t.element); }} 35B treeN-ary treeIncrease the breadth of trees to decrease the heightUsed for indexing of large amount of data (stored indisk) 36 18
19. 19. B tree (cont…) Unlike a binary-tree, each node of a b-tree may have a variable number of keys and children. The keys are stored in non-decreasing order. Each key has an associated child that is the root of a subtree containing all nodes with keys less than or equal to the key but greater than the preceeding key. A node also has an additional rightmost child that is the root for a subtree containing all keys greater than any keys in the node. 37Example 12 52 784 8 83 9105 19 26 37 46 60 69168279 79 85 93 11 13 20 27 38 49 54 61 70 80 86 95 12 14 21 28 44 50 56 62 71 81 90 97 17 22 31 45 57 66 76 82 98 19 26 35 59 67 77 83 99 60 38 19
20. 20. B tree (cont…) A b-tree has a minumum number of allowable children for each node known as the minimization factor. If t is this minimization factor, every node must have at least t - 1 keys. Under certain circumstances, the root node is allowed to violate this property by having fewer than t - 1 keys. Every node may have at most 2t - 1 keys or, equivalently, 2t children. 39Height of B-Tree For n greater than or equal to one, the height of an n-key b-tree T of height h with a minimum degree t greater than or equal to 2, 40 20
21. 21. Properties of B Trees For an M-ary B tree: The root has up to M children. Non-leaf nodes store up to M-1 keys, and have between M/2 and M children, except the root. All data items are stored at leaves. All leaves have to same depth, and store between L/2 and L data items. 41 SearchSearch for 66 12 52 78 4 8 83 91 05 19 26 37 46 60 69 168 279 79 85 93 11 13 20 27 38 49 54 61 70 80 86 95 12 14 21 28 44 50 56 62 71 81 90 97 17 22 31 45 57 66 76 82 98 19 26 35 59 67 77 83 99 60 42 21
22. 22. InsertInsert 55 Split leave 12 52 784 8 83 9105 19 26 37 46 60 6916 827 9 79 85 93 54 61 70 80 86 95 11 13 20 27 38 49 12 14 21 28 44 50 56 62 71 81 90 97 17 22 31 45 57 66 76 82 98 19 26 35 59 67 77 83 99 60 43 Insert Insert 32 Insert key 31 Split leave 12 52 78 4 8 Insert key 31 83 91 05 19 26 37 46 60 69 168 279 79 85 93 11 13 20 27 38 49 54 61 70 80 86 95 12 14 21 28 44 50 56 62 71 81 90 97 17 22 31 45 57 66 76 82 98 19 26 59 67 77 83 99 35 36 60 44 22
23. 23. B+ tree B+ tree or B plus tree is a type of tree which represents sorted data in a way that allows for efficient insertion, retrieval and removal of records, each of which is identified by a key. It is a dynamic, multilevel index, with maximum and minimum bounds on the number of keys in each index segment (usually called a "block" or "node"). In a B+ tree, in contrast to a B-tree, all records are stored at the leaf level of the tree; only keys are stored in interior nodes. 45B+ tree (cont…) The primary value of a B+ tree is in storing data for efficient retrieval in a block- oriented storage context — in particular, file systems. This is primarily because unlike binary search trees, B+ trees have very high fanout (typically on the order of 100 or more), which reduces the number of I/O operations required to find an element in the tree. 46 23
24. 24. A simple B+ tree example linking the keys 1–7 to data values d1-d7. The linked list (red) allows rapid in-order traversal. 47References Abdisalam Issa-Salwe, Taibah University, Madinah, Saudi Arabia. 48 24