Successfully reported this slideshow.
Your SlideShare is downloading. ×

VSSML16 LR1. Summary Day 1

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Loading in …3
×

Check these out next

1 of 38 Ad

VSSML16 LR1. Summary Day 1

Download to read offline

VSSML16 LR1. Summary Day 1
Valencian Summer School in Machine Learning 2016
Day 1
Summary Day 1
Mercè Martin (BigML)
https://bigml.com/events/valencian-summer-school-in-machine-learning-2016

VSSML16 LR1. Summary Day 1
Valencian Summer School in Machine Learning 2016
Day 1
Summary Day 1
Mercè Martin (BigML)
https://bigml.com/events/valencian-summer-school-in-machine-learning-2016

Advertisement
Advertisement

More Related Content

Slideshows for you (20)

Advertisement

Similar to VSSML16 LR1. Summary Day 1 (20)

More from BigML, Inc (20)

Advertisement

Recently uploaded (20)

VSSML16 LR1. Summary Day 1

  1. 1. Class summary
  2. 2. BigML, Inc. 2 Day 1 – Morning sessions Class su
  3. 3. BigML, Inc. 3 A Gentle Introduction to Machine Learning Charles Parker ● Experts  who  extract  some  rules to predict new results ● Programmers  who  tailor  a  computer  program  that  predicts  following  the  expert's rules. ● Non  easily  scalable  to  the  entire organization ● Data  (often  easily  to  be  found  and  more  accurate  than the expert) ● ML algorithms (faster,  more  modular,  measurable performance) ● Scalable  to  the  entire  organization What is your company's strategy based on? Expert­driven decisions Data­driven decisions
  4. 4. BigML, Inc. 4 A Gentle Introduction to Machine Learning When data­driven decisions are a good idea ● Experts are hard to find or expensive ● Expert  knowledge  is  difficult  to  be  programmed  into  production environments accurately/quickly enough ● Experts cannot explain how they do it: character or speech  recognition ● There's a performance­critical hand­made system ● Experts are easily found and cheap ● Expert  knowledge  is  easily  programmed  into  production  environments ● The data is difficult or expensive to acquire When data­driven decisions are a bad idea
  5. 5. BigML, Inc. 5 A Gentle Introduction to Machine Learning Steps to create a ML program from data ● Acquiring data In  tabular  format:  each  row  stores  the  information  about  the  thing that has a property that you want to predict. Each column  is a different attribute (field or feature). ● Defining the objective The property that you are trying to predict ● Using an ML algorithm The algorithm builds a program (the model or classifier) whose  inputs are the attributes of the new instance to be predicted and  whose  output  is  the  predicted  value  for  the  target  field  (the  objective).
  6. 6. BigML, Inc. 6 A Gentle Introduction to Machine Learning Modeling: creating a program with an ML algorithm ● The  algorithm  searches  in  a  Hypothesis  Space  the  set  of  variables that best fits your data Examples of Hypothesis Spaces: ● Logistic regression: Features coefficients + bias ● Neural network: weights for the nodes in the network ● Support vector machines: coefficients on each training point ● Decision trees: combination of features ranges
  7. 7. BigML, Inc. 7 A Gentle Introduction to Machine Learning Decision tree construction ● What question splits better you data? try all possible splits  and choose the one that achieves more purity ● When should we stop? When the size of the subset is totally pure When the size reaches a predetermined minimum When the number of nodes or tree depth is too large When you can’t get any statistically significant  improvement ● Nodes  that  don’t  meet  the  latter  criteria  can  be  removed  after tree construction via pruning The recursive algorithm analyzes the data to find
  8. 8. BigML, Inc. 8 A Gentle Introduction to Machine Learning Visualizing a decision tree Root node (split at petal length=2.45) Branches Leaf (splitting stops)
  9. 9. BigML, Inc. 9 A Gentle Introduction to Machine Learning Decision tree outputs ● Prediction:  Start  from  the  root  node.  Use  the  inputs  to  answer  the  question  associated  to  each  node  you  reach.  The  answer  will  decide  which  branch  will  be  used  to  descend the tree. If you reach a leaf node, the majority class  in the leaf will be the prediction. ● Confidence: Degree of reliability of the prediction. Depends  on the purity of the final node and the number of instances  that it classifies. ● Field  importance:  Which  field  is  more  decisive  in  the  model's classification. Depends on the number of times it is  used as the best split and the error reduction it achieves. Inputs: values of the features for a new instance
  10. 10. BigML, Inc. 10 A Gentle Introduction to Machine Learning Evaluating your models ● Testing your model with new data is the key to measure its  performance. Never evaluate with training data! ● Simplest  approach:  split  your  data  into  a  training  dataset  and a test dataset (80­20% is costumary) ● Advanced approach: to avoid biased splits, do it repeatedly  and average evaluations or k­fold cross­validate. ● Accuracy  is  not  a  good  metric  when  classes  are  unbalanced.  Use  the  confusion  matrix  instead  or  phi,  F1­ score or balanced accuracy. Which evaluation metric to choose?
  11. 11. BigML, Inc. 11 ● Confusion matrix can tell the number of correctly classified (TP, TN) or misclassified instances (FP, FN) but this does not tell you how misclassifications will impact your business. ● As a domain expert, you can assign a cost to each FP or FN (cost matrix). This cost/gain ratio is the significant performance measure for your models. A Gentle Introduction to Machine Learning Domain specific evaluation
  12. 12. BigML, Inc. 12 ● Ensembles are groups of different models built on samples of data. ● Randomness is introduced in the models. Each model is a good approximation for a different random sample of data. ● A single ML Algorithm may not adapt nicely to some datasets. Combining different models can. ● Combining models can reduce the over-fitting caused by anomalies, errors or outliers. ● The combination of several accurate models gets us closer to the real model. Ensembles Can a group of weaker models outperform a stronger  single model? Poul Petersen
  13. 13. BigML, Inc. 13 ● Bootstrap aggregating (bagging) models are built on random samples (with replacement) of n instances. ● Random decision forest in addition to the random samples of bagging, the models are built by choosing randomly the candidate features at each split (random candidates). ● Plurality majority wins ● Confidence weighted each vote is weigthed by confidence and majority wins ● Probability weighted each tree votes according to the distribution at its prediction node ● K-Threshold a class is predicted only if enough models vote for it ● Confidence Threshold votes for a class are only computed if their confidence is over the threshold Ensembles Types of ensembles Types of combinations
  14. 14. BigML, Inc. 14 ● How many trees? ● How many nodes? ● Missing splits? ● Random Candidates? ● SMACdown: automatic optimization of ensembles by exploring the configuration space. Ensembles Configuration parameters Too many parameters? Automate!
  15. 15. BigML, Inc. 15 ● Regressions are typically used to relate two numeric variables ● But using the proper function we can relate discrete variables too Logistic Regression How comes we use a regression to classify? Logistic Regression is a classification ML Algorithm Poul Petersen
  16. 16. BigML, Inc. 16 ● We should use feature engineering to transform raw features in linearly related predictors, if needed. ● The ML algorithm searches for the coefficients to solve the problem by transforming it into a linear regression problem In general, the algorithm will find a coefficient per feature plus a bias coefficient and a missing coefficient Logistic Regression Assumption: The output is linearly related to the  predictors.
  17. 17. BigML, Inc. 17 • Bias: Allows an intercept term. Important if P(x=0) != 0 • Regularization L1: prefers zeroing individual coefficients L2: prefers pushing all coefficients towards zero • EPS: The minimum error between steps to stop. • Auto-scaling: Ensures that all features contribute equally. Recommended unless there is a specific need to not auto-scale. Logistic Regression Configuration parameters
  18. 18. BigML, Inc. 18 • Multi-class LR: Each class has its own LR computed as a binary problem (one-vs-the-rest). A set of coefficients is computed for each class. • Non-numeric predictors: As LR works for numeric predictors, the algorithm needs to do some encoding of the non-numeric features to be able to use them. These are the field-encodings. – Categorical: one-shot, dummy encoding, contrast encoding – Text and Items: frequencies of terms ● Curvilinear LR: adding quadratic features as new features Logistic Regression Extending the domain for the algorithm
  19. 19. BigML, Inc. 19 Logistic Regression Logistic Regressions versus Decision Trees ● Expects a "smooth" linear relationship with predictors ● LR is concerned with probability of a discrete outcome. ● Lots of parameters to get wrong: regularization, scaling, codings ● Slightly less prone to over- fitting ● Because fits a shape, might work better when less data available. ● Adapts well to ragged non-linear relationships ● No concern: classification, regression, multi-class all fine. ● Virtually parameter free ● Slightly more prone to over-fitting ● Prefers surfaces parallel to parameter axes, but given enough data will discover any shape.
  20. 20. BigML, Inc. 20 Day 1 – Evening sessions
  21. 21. BigML, Inc. 21 ● Clustering is a ML technique designed to find and group of similar instances in your data (group by). ● It's unsupervised learning, as opposed to supervised learning algorithms, like decision trees, where training data has been labeled and the model learns to predict that label. Clusters are built on raw data. ● Goal: finding k clusters in which similar data can be grouped together. Data in each cluster is similar self similar and dissimilar to the rest. Clusters Clusters: looking for similarity Poul Petersen
  22. 22. BigML, Inc. 22 ● Customer segmentation: grouping users to act on each group differently ● Item discovery: grouping items to find similar alternatives ● Similarity: Grouping products or cases to act on each group differently ● Recommender: grouping products to recommend similar ones ● Active learning: grouping partially labeled data as alternative to labeling each instance Clustering can help us to identify new features shared by the data in the groups Clusters Use cases
  23. 23. BigML, Inc. 23 ● K-means: The number of expected groups is given by the user. The algorithm starts using random data points as centers. – K++: the first center is chosen randomly from instances and each subsequent center is chosen from the remaining instances with probability proportional to its squared distance from the point's closest existing cluster center Clusters Types of clustering algorithm The algorithm computes distances based on each instance features. Each instance is assigned to the nearest center or centroid. Centroids are recalculated as the center of all the data points in each cluster and process is repeated till the groups converge. ● G-means: The number of groups is also determined by the algorithm. Starting from k=2, each group is split if the data distribution in it is not Gaussian-like.
  24. 24. BigML, Inc. 24 How distance between two instances is defined? For clustering to work we need a distance function that must be computable for all the features in your data. Scaled euclidean distance is used for numeric features. What about the rest of field types? Categorical: Features contribute to the distance if categories for both points are not the same Text and Items: Words are parsed and its frequencies are stored in a vector format. Cosine distance (1 – cosine similarity) is computed. Missing values: Distance to a missing value cannot be defined. Either you ignore the instances with missing values or you previously assign a common value (mean, median, zero, etc.) Clusters Extending clustering to different data types
  25. 25. BigML, Inc. 25 ● Anomaly detectors use ML algorithms designed to single out instances in your data which do not follow the general pattern (rank by). ● As clustering, they fall into the unsupervised learning category, so no labeling is required. Anomaly detectors are built on raw data. ● Goal: Assigning to each data instance an anomaly score, ranging from 0 to 1, where 0 means very similar to the rest of instances and 1 means very dissimilar (anomalous). Anomaly Detection Anomaly detection: looking for the unusual Poul Petersen
  26. 26. BigML, Inc. 26 ● Unusual instance discovery ● Intrusion Detection: users whose behaviour does not comply to the general pattern may indicate an intrusion ● Fraud: Cluster per profile and look for anomalous transactions at different levels (card, user, user groups) ● Identify Incorrect Data ● Remove Outliers ● Model Competence / Input Data Drift: Models performance can be downgraded because new data has evolved to be statistically different. Check the prediction's anomaly score. Anomaly Detection Use cases
  27. 27. BigML, Inc. 27 Anomaly Detection Statistical anomaly indicators ● Univariate­approach:  Given  a  single  variable, and assuming normal distribution  (Gaussian).  Compute  the  standard  deviation  and  choose  a  multiple  of  it  as  threshold to define what's anomalous. ● Benford's  law:  In  real­life  numeric  sets  the  small  digits  occur  disproportionately  often as leading significant digits.
  28. 28. BigML, Inc. 28 Anomaly Detection Isolation forests ● Train several random  decision trees that over­fit  data till each instance is  completely isolated ● Use the medium depth of  these trees as threshold to  compute the anomaly  score, a number from 0 to 1  where 0 is similar and 1 is  dissimilar ● New instances are run  through the trees and  assigned an anomaly score  according to the average  depth they reach
  29. 29. BigML, Inc. 29 ● Association Discovery is an unsupervised technique, like clustering and anomaly detection. ● Uses the “Magnum Opus” algorithm by Geoff Webb Association Discovery Geoff Webb and Poul Petersen Looking for “interesting” relations between variables date customer account auth class zip amount Mon Bob 3421 pin clothes 46140 135 Tue Bob 3421 sign food 46140 401 Tue Alice 2456 pin food 12222 234 Wed Sally 6788 pin gas 26339 94 Wed Bob 3421 pin tech 21350 2459 Wed Bob 3421 pin gas 46140 83 Tue Sally 6788 sign food 26339 51 {class = gas} amount < 100 {customer = Bob, account = 3421} zip = 46140 Antecedent Consequent
  30. 30. BigML, Inc. 30 Association Discovery Use Cases Market Basket Analysis Web usage patterns Intrusion detection Fraud detection Bioinformatics Medical risk factors
  31. 31. BigML, Inc. 31 Association Discovery Problems with frequent pattern mining ● Often results in too few or too many patterns ● Some high value patterns are infrequent ● Cannot handle dense data ● Cannot prune search space using constraints on relationship between antecedent and consequent eg confidence ● Minimum support may not be relevant ● Cannot be low enough to capture all valid rules cannot be high enough to exclude all spurious rules
  32. 32. BigML, Inc. 32 ● Very high support patterns can be spurious ● Very infrequent patterns can be significant So the user selects the measure of interest System finds the top-k associations on that measure within constraints – Must be statistically significant interaction between antecedent and consequent – Every item in the antecedent must increase the strength of association Association Discovery It turns out that:
  33. 33. BigML, Inc. 33 Association Discovery Measures: Coverage Support Confidence Lift Leverage Support/ Coverage Ratio Difference
  34. 34. BigML, Inc. 34 Association Discovery Meaningful relations:
  35. 35. BigML, Inc. 35 ● Generative models try to fit the coefficients of a generic function to use it as data generating function. This conveys information about the structure of the model (looking for causality). ● Discriminative models, do not care about how the labeling is generated, they only find how to split the data into categories ● Generative models are more probabilistically sound and able to do more than just classify ● Discriminative models are faster to fit and quicker to predict Latent Dirichlet Allocation Generative vs discriminative models Charles Parker Pros and Cons
  36. 36. BigML, Inc. 36 A document can be analyzed from different levels ● According to its terms (one or more words) ● According to its topics (distributions of terms ~ semantics) ● Documents are generated by repeatedly drawing a topic and a term in that topic at random ● Goal: To infer the topic distribution How? Dirichlet Process is used to model the term|topic, and topic|document distributions Latent Dirichlet Allocation Thinking of documents in terms of Topics Generative Models for documents
  37. 37. BigML, Inc. 37 ● We're more likely to think a word came from a topic if we've already seen a bunch of other words from that topic ● We're more likely to think the topic was responsible for generating the document if we've already seen a bunch of words in the document from that topic. ● Visualizing topic changes in documents over time (specially for dated historical collections) ● Search by topics (without keywords) ● Using topics as a new feature instead of the bag of words approach in modeling Latent Dirichlet Allocation Dirichlet Process intuitions Applications
  38. 38. BigML, Inc. 38 ● Topics can reduce the feature space ● Are nicely interpretable ● Automatically tailored to the document ● Need to choose the number of topics ● Takes a lot of time to fit or do inference ● Takes a lot of text to make it meaningful ● Tends to focus on “meaningless minutiae” ● While sometimes makes nice classifications, it's usually not a dramatic improvement over bag-of-words ● Nice for exploration Latent Dirichlet Allocation Nice properties about topics Caveats

×