Why addressing climate change may be good for your health


Published on

Conference by Paul Wilkinson - Professor of Environmental Epidemiology at the London School of Hygiene & Tropical Medicine (LSHTM) at Klimagune Conferences 2012

Published in: Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Why addressing climate change may be good for your health

  1. 1. Why addressing climate change  may be good for your health Paul WilkinsonLondon School of Hygiene & Tropical Medicine
  2. 2. Paleo‐climate & CO2 record, Vostock ice cores, Antarctica Hoped for stabilization 550 10Temperature (degrees Celsius) relative to today (CO2 equivalent) 500 450 CO2 concentrations, ppmv 5 400 Current CO2 350 0 300 Pre-industrial CO2 250 -5 200 150 -10 -400 -350 -300 -250 -200 -150 -100 -50 0 Thousands of years relative to present
  3. 3. IPCC scenario  ‘projections’ 4‐5 °C  Younger Dryas event (12.9 mya): sudden increase dramatic drop in temperature after warming  (Europe summers 5‐8°C cooler, winters 10‐12  °C cooler).  Then equally sudden increase. Source: WHO, 2003: Climate change and human health: risks and responses.
  4. 4. Responses Adaptation Mitigation “actions taken to help  “implementing policies to communities and ecosystems  reduce GHG emissions and  cope with changing climate  enhance sinks” conditions”
  5. 5. Reducing the impact on health  of climate change
  6. 6. CLIMATE CHANGE & HEALTH Moderating influences HEALTH EFFECTS Temperature-related REGIONAL illness, death WEATHER Extreme weather- CHANGES: related health effects -temperature/ Air pollution-relatedCLIMATE heatwaves Contamination health effects pathwaysCHANGE - extreme Allergies weather Transmission dynamics Water- and food -precipitation Crop production borne diseases Air pollution Vector-borne and levels rodent-borne dis. Malnutrition Based on Patz et al. 2000 Adaptation measures
  7. 7. Mortality in Paris, 1999‐2002 v 2003 peak: 13 Aug
  8. 8. Epidemiological  relationship: London London Slope 1.8 = 3.8% per oC RR 1.6 1.4 1.2 % of days 1.0 15 0.8 Threshold 10 = 24.8 oC 5 0 10 15 20 25 30 35 TemperatureSource: JECH 2010
  10. 10. Mosquito Parasite Biting frequency Survival probability Incubation period 1 50 0.3 0.8 40 (per day)(per day) (days) 0.2 0.6 30 0.4 20 0.1 0.2 10 0 0 0 10 15 20 25 30 35 40 10 15 20 25 30 35 40 15 20 25 30 35 40 Temp (°C) Temp (°C) Temp (°C) TRANSMISSION POTENTIAL 1 0.8 0.6 0.4 0.2 0 14 17 20 23 26 29 32 35 38 41 Temperature (°C)
  11. 11. PREDICTED CHANGE IN MONTHS PER YEAR OF FALCIPARUMMALARIA TRANSMISSION BY 2080 Difference in months of transmission 2080s and baseline >+1 month +1 month -1 month <-1 monthFrom Martens et al. 1999[Climate change scenario developed by the UK Hadley Centre]
  12. 12. Changing global malaria endemicity since 1900.a, Pre‐intervention endemicity (approximately 1900) b, Contemporary endemicity for 2007 based on a recent global project to define the limits and intensity of current P. falciparum transmissionSource: PW Gething et al. Nature 465, 342‐345 (2010) doi:10.1038/nature09098
  13. 13. Change in falciparum malaria, 1900 to 2007Change in falciparum malaria endemicity, 1900 to 2007. Negative values denote a reduction in endemicity, positive values an increase. PW Gething et al. Nature 465, 342‐345 (2010) doi:10.1038/nature09098
  14. 14. “the proposed future effects of rising temperatures on endemicityare at least one order of magnitude smaller than changes observed since about 1900 and up to two orders of magnitude smaller than those that can be achieved by the effective scale‐up of key control measures. Predictions of an intensification of malaria in a warmer world, based on extrapolated empirical relationships or biological mechanisms, must be set against a context of a century of warming that has seen marked global declines in the disease and a substantial weakening of the global correlation between malaria endemicity and climate” Source: Gething PW, et al.  Nature 2010; 465: 342–345
  15. 15. Extreme events can be damaging even with the most sophisticated protection systems ...but contribution of climate change unclear
  16. 16. Avoiding climate change
  17. 17. Fossil Fuel CO2 Emissions compared to  2.9‐6.9°C IPCC Marker scenarios used for climate projections 1.6‐3.4°C CO2 emissions (Pg C y‐1) 10 5 1980 2000 2020 Time (y)Updated from Le Quéré et al (2009) Nature Geoscience, using Marker scenarios modified from Raupach et al. PNAS (2007)
  18. 18. Per capita energy use vs GDP (2007) Source: Gapminder database Qatar 10000 United States(kWh per year, log scale) Spain Per capita energy use China 1000 India 100 100 1000 10000 100000 Per capita GPD (year 2000 US$, log scale)
  19. 19. Per capita CO2 emissions vs GDP (2007) Source: Gapminder database Qatar 20 United States(tonnes per year, log scale) Spain Per capita CO2 emissions China 5 India .2 1 100 1000 10000 100000 Per capita GPD (year 2000 US$, log scale)
  20. 20. Mitigation• Requires reduction in GHG emissions by ~90% in high income  countries by mid century• Major shifts in all sectors of the economy• Changes in technology, regulation, (fiscal) incentives, persuasion,  cooperation… Efficiency alone is not a solution• Non‐linearities suggest it may already be too late (Lovelock): polar albedo, reversal of Amazonian carbon sink, gas hydrates etc• Rationale for change needs to be based on nearer‐term  imperatives: ‘peak oil’, energy security, health
  21. 21. Ancillary (near term) health effects of mitigation actions
  22. 22. Task Force on Climate Change Mitigation  and Public HealthSupported by a consortium of funding bodies coordinated by the Wellcome TrustDepartment of Health NIHR, Economic and Social Research Council, Royal College of Physicians, Academy of Medical Sciences, US National Institute of Environmental Health Sciences and  WHOInvolving over 50 researchers from UK, USA, India, Canada, Australia, Spain, France, New Zealand, WHO Geneva
  23. 23. Study methodsScenarios• Interventions of the type and scale needed to achieve 2030  GHG abatement targets • Case studies from high‐ and low‐income countries• Health impact calculations based on comparative risk  assessment approach (WHO)Sectors• Household energy• Transport• Electricity generation• Food and agriculture
  24. 24. HOUSEHOLD ENERGYSetting Intervention Time course Principal  Main  exposures outcomes Changes to: fabric,  Particles Cardio‐ ventilation  2010, with and  Radon respiratory  control, fuel  without  ETS diseaseUK source,   intervention Mould Lung cancer temperature  Temperature  Cold‐related  setting (cold) death Improved (clean  ALRI (children) 150 million  Indoor exposure  burning)  IHDIndia stoves over 10  to combustion  cookstove  COPD years products programme
  25. 25. RADON PM CO Indoor air VENTILATION quality ETS VOCs Altered ventilation Mould Cardio- growth respiratory illness Winter morbidity/ Temperature mortality Energy WINTER WARMTH/efficiency control SUMMER COOL Thermal comfort Use of space Social interaction Psycho-social Sense of control well-being Lower fuel use & cost Increased Nutrition ENERGY USE disposable income Local and global Reduced environmental emissions impacts
  26. 26. … in Indian – replacing traditional with modern stoves Per meal ~15‐fold reduction in black  carbon and other particles ~10‐fold  reduction in ozone precursors ~5‐fold reduction in carbon monoxide Gasifier Stove with Electric Blower (battery recharged with Traditional Biomass Stove cell phone charger)
  27. 27. GHG benefits of Indian stove programme• Reductions in black carbon, methane, ozone precursors  could amount to the equivalent of 0.5‐1.0 billion tonnes  of CO2 eq over the decade• Because they are short lived (days), reductions in the  emissions would immediately benefit climate, unlike CO2• Cost <$50 per household every 5 years
  28. 28. Impact per million of  UK household  India programme  2010 population in 1  energy efficiency of improved  year (combined  cookstoves* improvements) DALYs saved 850 12,500 Deaths averted 90 990 Mt‐CO2 (CO2e) saved 0.7 0.1 ‐ 0.2* Results based on comparison of 2010 population with and without full implementation of programme
  29. 29. Pathways linking transport and health Climate change Road injuries Chronic  diseaseVehicle  Physical transport inactivity Overweight/ Mental well‐ obesity being Environmental pollutionPromotion of active transport Noise/QoL
  30. 30. Health benefits in London: alternative scenarios
  31. 31. Health effects by disease (London) Change in disease burden Change in premature  deaths Ischaemic heart  10‐19%  1440‐2210 disease Cerebrovascular  10‐18% 870‐1270 disease Dementia 7‐8% 200‐250 Breast cancer 12‐13% 200‐210Road traffic crashes 19‐39% 50‐90
  32. 32. Air pollution impacts vs CO2 emissions Cases of serious illness from air pollution /TWhDeaths from air pollution and accidents/TWh A B 40 30 lignite 0 lignite 30 coal 200 coal oil 20 oil 100 10 biomass biomass gas gas nuclear 0 nuclear0 0 500 1000 1500 0 500 1000 1500 Equivalent CO2 emissions g/kW.hr-1 Source: Markandya A, Wilkinson P. Lancet 2007
  33. 33. Food and Agriculture Sector• Source of 10‐12% of global greenhouse‐gas emissions• Change in land‐use (eg. deforestation) significant contributor  to global emissions (adds further 6‐17%)• Total emissions from sector set to rise by up to 50% by 2030• Four‐fifths (80%) of total emissions in sector arise from  processes involved in livestock production
  34. 34. Pathways to health
  35. 35. Recent and projected (to 2050) consumption of  livestock products Projections Industrialised Ex‐Soviet bloc countries ‐in‐transition East Asia Latin America,  Near East, N  Caribbean Africa South Asia Sub‐Saharan Africa YearSource: Livestock’s Long Shadow: Environmental Issues and Options.  Food and Agriculture Organization of the United Nations, Rome, 2007. 
  36. 36. Estimates of total greenhouse‐gas emissions for  livestock products in the UKTonnes of CO2e per tonne of  carcass massNot including emissions resulting from global change in land use
  37. 37. Case studies: health effects• Case studies: UK and the city of São Paulo, Brazil• Assumed: 30% reduction in livestock production and animal  source saturated fat consumption• Outcome: substantial  benefits from decreased IHD: – UK: ~15%↓ (~ 18,000 premature deaths averted) – São Paulo: ~16%↓ (~ 1000 premature deaths averted)
  38. 38. 12500DALYs saved per million 2010 population in 1 year Delhi,  sustainable  10000 transport India, clean cookstove  (2010 calculation) 7500 London, sustainable transport 5000 UK, food (IHD) 2500 India, electricity, full trade China, electricity, full  Delhi, lower C  trade driving 0 UK, housing, combined  London, lower C driving efficiency EU, electricity, full trade ‐.5 0 .5 1 1.5 2 Mt CO2e saved per million 2010 population in 1 year
  39. 39. Conclusions• Adaptation to the evolving risks of climate change will be  needed irrespective of mitigation measures• There are potentially substantial dividends for health of a  transition to a low carbon economy, which provides an added  rationale for acceleration of mitigation actions• Policies that address both public health and climate change  are more attractive than focusing on either in isolation