SlideShare a Scribd company logo
1 of 34
Download to read offline
Nucleate Boiling Heat Transfer
P M V Subbarao
Professor
Mechanical Engineering Department
Recognition and Adaptation of Efficient Mode of Heat
Transfer …..
The Religious Attitude
The Onset of Nucleate Boiling
• If the wall temperature rises sufficiently above the local saturation
temperature pre-existing vapor in wall sites can nucleate and grow.
• This temperature, TONB, marks the onset of nucleate boiling for this
flow boiling situation.
• From the standpoint of an energy balance this occurs at a particular
axial location along the tube length, ZONB.
• For a uniform flux condition,
We can arrange this energy balance to emphasize the necessary
superheat above saturation for the onset of nucleate boiling









cbpL
ONB
wwiONBwall
hGAC
PZ
qTT
1''
,
ONBsatONBwall TTT ,
Now that we have a relation between TONB and ZONB we must
provide a stability model for the onset of nucleate boiling.
one can formulate a model based on the metastable condition of
nascent vapor nuclei ready to grow into the world.
There are a number of correlation models for this stability line of
TONB.
 wwisat
cbpL
ONB
ONB TT
hACm
PZ
qT 









1''

Their equation is valid for water only, given by
  0234.0
158.1
''
463.0
1082
558.0 p
p
q
TT ONBSATWW 
  








gfgL
SAT
ONBSATWW
hk
Tq
TT

 ''
8
Bergles and Rohsenow (1964) obtained an equation for the wall
superheat required for the onset of subcooled boiling.
Subcooled Boiling
• The onset of nucleate boiling indicates the location where the vapor can first
exist in a stable state on the heater surface without condensing or vapor
collapse.
• As more energy is input into the liquid (i.e., downstream axially) these vapor
bubbles can grow and eventually detach from the heater surface and enter the
liquid.
• Onset of nucleate boiling occurs at an axial location before the bulk liquid is
saturated.
• The point where the vapor bubbles could detach from the heater surface would
also occur at an axial location before the bulk liquid is saturated.
• This axial length over which boiling occurs when the bulk liquid is subcooled
is called the "subcooled boiling" length.
• This region may be large or small in actual size depending on the fluid
properties, mass flow rate, pressures and heat flux.
• It is a region of inherent nonequilibrium where the flowing mass quality and
vapor void fraction are non-zero and positive even though the thermodynamic
equilibrium quality and volume fraction would be zero; since the bulk
temperature is below saturation.
The first objective is to determine the amount of superheat
necessary to allow vapor bubble departure and then the axial
location where this would occur.
A force balance to estimate the degree of superheat necessary for
bubble departure.
In this conceptual model the bubble radius rB, is assumed to be
proportional to the distance to the tip of the vapor bubble,YB ,
away from the heated wall.
One can then calculate this distance
Two-Phase Flow Boiling Heat Transfer
Coefficient
• The local two-phase flow boiling heat transfer coefficient
for evaporation inside a tube, hz, is defined as:
satww
z
TT
q
h


''
where q” corresponds to the local heat flux from the tube wall
into the fluid,
Tsat is the local saturation temperature at the local saturation
pressure psat
Tww is the local wall temperature at the axial position along the
evaporator tube, assumed to be uniform around the perimeter of
the tube.
Models for Heat Transfer Coefficient
• Flow boiling models normally consider two heat transfer
mechanisms to be important.
• Nucleate boiling heat transfer ( hnb )
• The bubbles formed inside a tube may slide along the
heated surface due to the axial bulk flow, and hence the
microlayer evaporation process underneath the growing
bubbles may also be affected.
• Convective boiling heat transfer ( hcb )
• Convective boiling refers to the convective process
between the heated wall and the liquid-phase.
Superposition of Two Mechanisms
• power law format, typical of superposition of two thermal
mechanisms upon one another:
 nn
cb
n
nbtp hhh
1

Liquid Convection
Nucleate Boiling
n=1
n=2
n=3
n=∞
cb
tp
h
h

Correlations for Two-phase Nucleate Flow Boiling
• Chen Correlation
• Shah Correlation
• Gungor-Winterton Correlations
• Steiner-Taborek Asymptotic Model
Chen Correlation
• Chen (1963, 1966) proposed the first flow boiling correlation for
evaporation in vertical tubes to attain widespread use.
• The local two-phase flow boiling coefficient htp is to be the
weighted sum of the nucleate boiling contribution hnb and the
convective contribution hcb
• The temperature gradient in the liquid near the tube wall is steeper
under forced convection conditions, relative to that in nucleate
pool boiling.
• The convection partially suppresses the nucleation of boiling sites
and hence reduced the contribution of nucleate boiling.
• On the other hand, the vapor formed by the evaporation process
increased the liquid velocity and hence the convective heat
transfer contribution tends to be increased relative to that of
single-phase flow of the liquid.
• Formulation of an expression to account for these two
effects:
cbnbtp hFhSh 
• where the nucleate pool boiling correlation of Forster and
Zuber is used to calculate the nucleate boiling heat transfer
coefficient, FZ ;
• the nucleate boiling suppression factor acting on hnb is S;
• the turbulent flow correlation of Dittus-Boelter (1930) for
tubular flows is used to calculate the liquid-phase convective
heat transfer coefficient,
• L ; and the increase in the liquid-phase convection due to the
two-phase flow is given by his two-phase multiplier F. The
Forster-Zuber correlation gives the nucleate pool boiling
coefficient as:
75.024.0
79.079.079.079.0
49.045.079.0
00122.0 satsat
gfgLL
LpLL
nb pT
h
ck
h 













satlocalwallsat TTT  
satlocalwallsat ppp  
The liquid-phase convective heat transfer coefficient hL is given
by the Dittus-Boelter (1930) correlation for the fraction of
liquid flowing alone in a tube of internal diameter d i , i.e. using
a mass velocity of liquid, as:







d
k
pr
k
h
L
4.08.0
Re023.0
 
L
LpL
L k
cdxm 



 Re&
1
Re

The two-phase multiplier F of Chen is:
736.0
213.0
1







ttX
F
where the Martinelli parameter X tt
is used for the two-phase effect on
convection.
where Xtt is defined as:
1.05.09.0
1



















 

g
L
L
g
tt
x
x
X




Note: however, that when Xtt > 10, F is set equal to 1.0.
The Chen boiling suppression factor S is
  








 17.125.1
Re00000253.01
1
F
S
L
)( satss TThq 
Steiner-Taborek Asymptotic Model
• Natural limitations to flow boiling coefficients.
• Steiner and Taborek (1992) stated that the following limits
should apply to evaporation in vertical tubes:
• For heat fluxes below the threshold for the onset of
nucleate boiling (q’’ <q’’ONB ), only the convective
contribution should be counted and not the nucleate boiling
contribution.
• For very large heat fluxes, the nucleate boiling contribution
should dominate.
• When x = 0, htp should be equal to the single-phase liquid
convective heat transfer coefficient when q’’ <q’’ONB
• htp should correspond to that plus hnb when q’’ > q’’ONB .
• When x = 1.0, htp should equal the vapor-phase convective
coefficient hGt (the forced convection coefficient with the
total flow as vapor).
Boiling process in vertical tube according to
Steiner-Taborek
Boiling process in vertical tube according to
Steiner-Taborek
Circulation Ratio
• The circulation ratio is defined as the ratio of mixture passing through
the riser and the steam generated in it.
• The circulation rate of a circuit is not known in advance.
• The calculations are carried out with a number of assumed values of
mixture flow rate.
• The corresponding resistance in riser and down comer and motive head
are calculated.
• The flow rate at steady state is calculated.
cycle
ww
m
m
ncirculatiok 


Pressure Drop in Tubes
• The pressure drop through a tube comprise several
components:friciton, entrance loss, exit loss, fitting loss and
hydrostatic.
hydroexenfric ppppp 
Water Wall Arrangement
• Reliability of circulation of steam-water mixture.
• Grouping of water wall tubes.
• Each group will have tubes of similar geometry & heating conditions.
• The ratio of flow area of down-comer to flow are of riser is an
important factor, RA.
• It is a measure of resistance to flow.
• For high capacity Steam Generators, the steam generation per unit
cross section is kept within the range.
• High pressure (>9.5 Mpa) use a distributed down-comer system.
• The water velocity in the down-comer is chosen with care.
• For controlled circulation or assisted circulation it is necessary to
install throttling orifices at the entrance of riser tubes.
• The riser tubes are divided into several groups to reduce variation in
heat absorption levels among them.
Basic Geometry of A Furnace
v
c
q
LHVm
V


A
c
grate
q
LHVm
baA


 
b
b
q
LHVm
Hba

2
sff hh ,min, 
sbb min
Furnace Energy Balance
Waterwalls
Economizer
Furnace
Enthalpy to be lost by hot gases:
 FEGTadgaspgas TTcm ,


More Related Content

What's hot

Chapt 6 forced heat convection (interanl flow) t
Chapt 6 forced heat convection (interanl flow) tChapt 6 forced heat convection (interanl flow) t
Chapt 6 forced heat convection (interanl flow) tDebre Markos University
 
Flow through orifice meter
Flow through orifice meterFlow through orifice meter
Flow through orifice meterPulkit Shukla
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipeSaif al-din ali
 
Heat and Mass Transfer Basics
Heat and Mass Transfer BasicsHeat and Mass Transfer Basics
Heat and Mass Transfer BasicsMayavan T
 
Basic steam engineering nucleate boiling ppt
Basic steam engineering nucleate boiling pptBasic steam engineering nucleate boiling ppt
Basic steam engineering nucleate boiling pptFARRUKH SHEHZAD
 
Fectors Affecting the efficiency of Rankine cycle
Fectors Affecting the efficiency of Rankine cycleFectors Affecting the efficiency of Rankine cycle
Fectors Affecting the efficiency of Rankine cycleRushikesh Raval
 
Design plate heat exchangers
Design plate heat exchangersDesign plate heat exchangers
Design plate heat exchangersXuan Tung
 
Heat transfer applications in oil and gas industry
Heat transfer applications in oil and gas industry Heat transfer applications in oil and gas industry
Heat transfer applications in oil and gas industry abdulsamad alhamawande
 
Tutorial questions reheat rankine cycle
Tutorial  questions   reheat rankine cycleTutorial  questions   reheat rankine cycle
Tutorial questions reheat rankine cycleIbrahim AboKhalil
 
heat exchanger
heat exchangerheat exchanger
heat exchangerShanu Jp
 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notesSoumith V
 
Plate heat exchangers
Plate heat exchangersPlate heat exchangers
Plate heat exchangerstst34
 
Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4Janet Mok
 
reboiler in process industry.
reboiler in process industry.reboiler in process industry.
reboiler in process industry.JayJawalge
 
Chapter 7 EXTERNAL FORCED CONVECTION
Chapter 7EXTERNAL FORCED CONVECTIONChapter 7EXTERNAL FORCED CONVECTION
Chapter 7 EXTERNAL FORCED CONVECTIONAbdul Moiz Dota
 
heat transfer through fins
heat transfer through finsheat transfer through fins
heat transfer through finsprasantjangir
 

What's hot (20)

Chapt 6 forced heat convection (interanl flow) t
Chapt 6 forced heat convection (interanl flow) tChapt 6 forced heat convection (interanl flow) t
Chapt 6 forced heat convection (interanl flow) t
 
Flow through orifice meter
Flow through orifice meterFlow through orifice meter
Flow through orifice meter
 
friction loss along a pipe
friction loss along a pipefriction loss along a pipe
friction loss along a pipe
 
Cooling tower calculation (1) (1)
Cooling tower calculation (1) (1)Cooling tower calculation (1) (1)
Cooling tower calculation (1) (1)
 
Heat and Mass Transfer Basics
Heat and Mass Transfer BasicsHeat and Mass Transfer Basics
Heat and Mass Transfer Basics
 
Basic steam engineering nucleate boiling ppt
Basic steam engineering nucleate boiling pptBasic steam engineering nucleate boiling ppt
Basic steam engineering nucleate boiling ppt
 
Fectors Affecting the efficiency of Rankine cycle
Fectors Affecting the efficiency of Rankine cycleFectors Affecting the efficiency of Rankine cycle
Fectors Affecting the efficiency of Rankine cycle
 
Design plate heat exchangers
Design plate heat exchangersDesign plate heat exchangers
Design plate heat exchangers
 
HMT
HMTHMT
HMT
 
Heat transfer applications in oil and gas industry
Heat transfer applications in oil and gas industry Heat transfer applications in oil and gas industry
Heat transfer applications in oil and gas industry
 
Boiler calculations
Boiler calculationsBoiler calculations
Boiler calculations
 
Tutorial questions reheat rankine cycle
Tutorial  questions   reheat rankine cycleTutorial  questions   reheat rankine cycle
Tutorial questions reheat rankine cycle
 
heat exchanger
heat exchangerheat exchanger
heat exchanger
 
Heat transfer GATE notes
Heat transfer GATE notesHeat transfer GATE notes
Heat transfer GATE notes
 
Plate heat exchangers
Plate heat exchangersPlate heat exchangers
Plate heat exchangers
 
Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4Plate Heat Exchanger Lab Report Group B4
Plate Heat Exchanger Lab Report Group B4
 
nucleate boiling
nucleate boilingnucleate boiling
nucleate boiling
 
reboiler in process industry.
reboiler in process industry.reboiler in process industry.
reboiler in process industry.
 
Chapter 7 EXTERNAL FORCED CONVECTION
Chapter 7EXTERNAL FORCED CONVECTIONChapter 7EXTERNAL FORCED CONVECTION
Chapter 7 EXTERNAL FORCED CONVECTION
 
heat transfer through fins
heat transfer through finsheat transfer through fins
heat transfer through fins
 

Viewers also liked

Pincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorPincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorFrancisco Vargas
 
Convección: Principios Básicos
Convección: Principios BásicosConvección: Principios Básicos
Convección: Principios BásicosEdisson Paguatian
 
7.Cooling Tower
7.Cooling Tower7.Cooling Tower
7.Cooling Towerjubin
 
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesGuía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesFrancisco Vargas
 
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...Ijripublishers Ijri
 
Transferencia de calor por convección forzada presentación balances de calor
Transferencia de calor por convección forzada   presentación balances de calorTransferencia de calor por convección forzada   presentación balances de calor
Transferencia de calor por convección forzada presentación balances de calorOmar Resendiz Hernandez
 
Práctica 13 Estimación del Coeficiente de Convección/Película (h)
Práctica 13 Estimación del Coeficiente de Convección/Película (h)Práctica 13 Estimación del Coeficiente de Convección/Película (h)
Práctica 13 Estimación del Coeficiente de Convección/Película (h)JasminSeufert
 
Heat transfer by forced convection in turbulent flow
Heat transfer by forced convection in turbulent flowHeat transfer by forced convection in turbulent flow
Heat transfer by forced convection in turbulent flowRam Jenic
 
Experimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in anExperimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in anAlexander Decker
 
TRANSFERENCIA DE CALOR
TRANSFERENCIA DE CALORTRANSFERENCIA DE CALOR
TRANSFERENCIA DE CALORYeenHuang
 
Práctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por ConvecciónPráctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por ConvecciónJasminSeufert
 
Practica 9 coeficiente de pelicula
Practica 9  coeficiente de peliculaPractica 9  coeficiente de pelicula
Practica 9 coeficiente de peliculaDelly Baltazar
 
Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección Karen M. Guillén
 
Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Mauricio Huhn
 
Serie de problemas de transferencia de calor
Serie de problemas de transferencia de calorSerie de problemas de transferencia de calor
Serie de problemas de transferencia de calorAdalberto C
 
Convección natural y forzada
Convección natural y forzadaConvección natural y forzada
Convección natural y forzadaDiana Alejandra
 

Viewers also liked (20)

Pincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calorPincipios de la convección. problemario de transferencia de calor
Pincipios de la convección. problemario de transferencia de calor
 
Ciencias
CienciasCiencias
Ciencias
 
Convección: Principios Básicos
Convección: Principios BásicosConvección: Principios Básicos
Convección: Principios Básicos
 
7.Cooling Tower
7.Cooling Tower7.Cooling Tower
7.Cooling Tower
 
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionalesGuía teórico práctica de la transmisión del calor en sistemas unidimensionales
Guía teórico práctica de la transmisión del calor en sistemas unidimensionales
 
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
Experimental Investigation on Heat Transfer By Natural Convection Over A Cyli...
 
Transferencia de calor por convección forzada presentación balances de calor
Transferencia de calor por convección forzada   presentación balances de calorTransferencia de calor por convección forzada   presentación balances de calor
Transferencia de calor por convección forzada presentación balances de calor
 
Práctica 13 Estimación del Coeficiente de Convección/Película (h)
Práctica 13 Estimación del Coeficiente de Convección/Película (h)Práctica 13 Estimación del Coeficiente de Convección/Película (h)
Práctica 13 Estimación del Coeficiente de Convección/Película (h)
 
transferencia de calor
transferencia de calortransferencia de calor
transferencia de calor
 
Heat transfer by forced convection in turbulent flow
Heat transfer by forced convection in turbulent flowHeat transfer by forced convection in turbulent flow
Heat transfer by forced convection in turbulent flow
 
Experimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in anExperimental study of natural convection heat transfer in an
Experimental study of natural convection heat transfer in an
 
Transferencia de calor por convección y radiación
Transferencia de calor por convección y radiaciónTransferencia de calor por convección y radiación
Transferencia de calor por convección y radiación
 
TRANSFERENCIA DE CALOR
TRANSFERENCIA DE CALORTRANSFERENCIA DE CALOR
TRANSFERENCIA DE CALOR
 
Práctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por ConvecciónPráctica 12 Transferencia de Calor por Convección
Práctica 12 Transferencia de Calor por Convección
 
Practica 9 coeficiente de pelicula
Practica 9  coeficiente de peliculaPractica 9  coeficiente de pelicula
Practica 9 coeficiente de pelicula
 
Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección Práctica XIII Determinación del coeficiende de convección
Práctica XIII Determinación del coeficiende de convección
 
Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...Práctica de transferencia de calor por coductividad, convección y transferenc...
Práctica de transferencia de calor por coductividad, convección y transferenc...
 
Serie de problemas de transferencia de calor
Serie de problemas de transferencia de calorSerie de problemas de transferencia de calor
Serie de problemas de transferencia de calor
 
Convección natural y forzada
Convección natural y forzadaConvección natural y forzada
Convección natural y forzada
 
Presentation on cooling tower
Presentation on cooling towerPresentation on cooling tower
Presentation on cooling tower
 

Similar to Heat transfer power point

8. Heat exchange ggdjdkjjddddddddddddddddddddddddddd
8. Heat exchange ggdjdkjjddddddddddddddddddddddddddd8. Heat exchange ggdjdkjjddddddddddddddddddddddddddd
8. Heat exchange ggdjdkjjdddddddddddddddddddddddddddAttalhDjaafarAttalh
 
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILINGANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILINGArun Sarasan
 
Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3Abdul Moiz Dota
 
Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3Sami Ullah
 
Module 12 Two Phase Fluid Flow And Heat Transfer 2010 June Nrc
Module 12   Two Phase Fluid Flow And Heat Transfer 2010 June NrcModule 12   Two Phase Fluid Flow And Heat Transfer 2010 June Nrc
Module 12 Two Phase Fluid Flow And Heat Transfer 2010 June NrcJoe Miller
 
Cryogenic Chilldown of Liquid Nitrigen.pptx
Cryogenic Chilldown of Liquid Nitrigen.pptxCryogenic Chilldown of Liquid Nitrigen.pptx
Cryogenic Chilldown of Liquid Nitrigen.pptxgeotsam1
 
Chapter11-Heat Transfer with Phase Change.pptx
Chapter11-Heat Transfer with Phase Change.pptxChapter11-Heat Transfer with Phase Change.pptx
Chapter11-Heat Transfer with Phase Change.pptxsherazahmad646566
 
Forced convection
Forced convectionForced convection
Forced convectionmsg15
 
New shell & tube heat exchanger
New shell & tube heat exchangerNew shell & tube heat exchanger
New shell & tube heat exchangervatsalpateln
 
convection heat transfer convection heat
convection heat transfer convection heatconvection heat transfer convection heat
convection heat transfer convection heatLalerz
 
Internal Forced Convection
Internal Forced ConvectionInternal Forced Convection
Internal Forced ConvectionKumarMurari5
 
CONVECTION & boiling condensation.pptx
CONVECTION & boiling condensation.pptxCONVECTION & boiling condensation.pptx
CONVECTION & boiling condensation.pptxSkSharma749863
 

Similar to Heat transfer power point (20)

Mel725 32
Mel725 32Mel725 32
Mel725 32
 
Mel725 32
Mel725 32Mel725 32
Mel725 32
 
Mel725 32
Mel725 32Mel725 32
Mel725 32
 
CEDB201 REBOILER DESIGN_2022.pptx
CEDB201 REBOILER DESIGN_2022.pptxCEDB201 REBOILER DESIGN_2022.pptx
CEDB201 REBOILER DESIGN_2022.pptx
 
8. Heat exchange ggdjdkjjddddddddddddddddddddddddddd
8. Heat exchange ggdjdkjjddddddddddddddddddddddddddd8. Heat exchange ggdjdkjjddddddddddddddddddddddddddd
8. Heat exchange ggdjdkjjddddddddddddddddddddddddddd
 
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILINGANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
ANALYSIS OF BOILING CURVE AND FORCED CONVECTION BOILING
 
Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3
 
Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3Fe 509 heat and mass transfer Lecture no 3
Fe 509 heat and mass transfer Lecture no 3
 
Module 12 Two Phase Fluid Flow And Heat Transfer 2010 June Nrc
Module 12   Two Phase Fluid Flow And Heat Transfer 2010 June NrcModule 12   Two Phase Fluid Flow And Heat Transfer 2010 June Nrc
Module 12 Two Phase Fluid Flow And Heat Transfer 2010 June Nrc
 
Cryogenic Chilldown of Liquid Nitrigen.pptx
Cryogenic Chilldown of Liquid Nitrigen.pptxCryogenic Chilldown of Liquid Nitrigen.pptx
Cryogenic Chilldown of Liquid Nitrigen.pptx
 
Chapter11-Heat Transfer with Phase Change.pptx
Chapter11-Heat Transfer with Phase Change.pptxChapter11-Heat Transfer with Phase Change.pptx
Chapter11-Heat Transfer with Phase Change.pptx
 
F convection.ppt
F convection.pptF convection.ppt
F convection.ppt
 
Forced convection
Forced convectionForced convection
Forced convection
 
New shell & tube heat exchanger
New shell & tube heat exchangerNew shell & tube heat exchanger
New shell & tube heat exchanger
 
convection heat transfer convection heat
convection heat transfer convection heatconvection heat transfer convection heat
convection heat transfer convection heat
 
Internal Forced Convection
Internal Forced ConvectionInternal Forced Convection
Internal Forced Convection
 
Heat 4e chap08_lecture
Heat 4e chap08_lectureHeat 4e chap08_lecture
Heat 4e chap08_lecture
 
CONVECTION & boiling condensation.pptx
CONVECTION & boiling condensation.pptxCONVECTION & boiling condensation.pptx
CONVECTION & boiling condensation.pptx
 
mcl141-18.ppt
mcl141-18.pptmcl141-18.ppt
mcl141-18.ppt
 
Boilers
BoilersBoilers
Boilers
 

Recently uploaded

Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Romil Mishra
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptNoman khan
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating SystemRashmi Bhat
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHSneha Padhiar
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsResearcher Researcher
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdfsahilsajad201
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdfHafizMudaserAhmad
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfManish Kumar
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labsamber724300
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxStephen Sitton
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Sumanth A
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosVictor Morales
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionSneha Padhiar
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxRomil Mishra
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier Fernández Muñoz
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTSneha Padhiar
 

Recently uploaded (20)

Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________Gravity concentration_MI20612MI_________
Gravity concentration_MI20612MI_________
 
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptForming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).ppt
 
Input Output Management in Operating System
Input Output Management in Operating SystemInput Output Management in Operating System
Input Output Management in Operating System
 
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACHTEST CASE GENERATION GENERATION BLOCK BOX APPROACH
TEST CASE GENERATION GENERATION BLOCK BOX APPROACH
 
Novel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending ActuatorsNovel 3D-Printed Soft Linear and Bending Actuators
Novel 3D-Printed Soft Linear and Bending Actuators
 
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxEnergy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
 
Robotics Group 10 (Control Schemes) cse.pdf
Robotics Group 10  (Control Schemes) cse.pdfRobotics Group 10  (Control Schemes) cse.pdf
Robotics Group 10 (Control Schemes) cse.pdf
 
11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf11. Properties of Liquid Fuels in Energy Engineering.pdf
11. Properties of Liquid Fuels in Energy Engineering.pdf
 
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdfModule-1-(Building Acoustics) Noise Control (Unit-3). pdf
Module-1-(Building Acoustics) Noise Control (Unit-3). pdf
 
Secure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech LabsSecure Key Crypto - Tech Paper JET Tech Labs
Secure Key Crypto - Tech Paper JET Tech Labs
 
Turn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptxTurn leadership mistakes into a better future.pptx
Turn leadership mistakes into a better future.pptx
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
Robotics-Asimov's Laws, Mechanical Subsystems, Robot Kinematics, Robot Dynami...
 
KCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitosKCD Costa Rica 2024 - Nephio para parvulitos
KCD Costa Rica 2024 - Nephio para parvulitos
 
Cost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based questionCost estimation approach: FP to COCOMO scenario based question
Cost estimation approach: FP to COCOMO scenario based question
 
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptxCurve setting (Basic Mine Surveying)_MI10412MI.pptx
Curve setting (Basic Mine Surveying)_MI10412MI.pptx
 
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
 
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSHigh Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
 
Javier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptxJavier_Fernandez_CARS_workshop_presentation.pptx
Javier_Fernandez_CARS_workshop_presentation.pptx
 
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENTFUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
FUNCTIONAL AND NON FUNCTIONAL REQUIREMENT
 

Heat transfer power point

  • 1. Nucleate Boiling Heat Transfer P M V Subbarao Professor Mechanical Engineering Department Recognition and Adaptation of Efficient Mode of Heat Transfer …..
  • 3. The Onset of Nucleate Boiling • If the wall temperature rises sufficiently above the local saturation temperature pre-existing vapor in wall sites can nucleate and grow. • This temperature, TONB, marks the onset of nucleate boiling for this flow boiling situation. • From the standpoint of an energy balance this occurs at a particular axial location along the tube length, ZONB. • For a uniform flux condition, We can arrange this energy balance to emphasize the necessary superheat above saturation for the onset of nucleate boiling          cbpL ONB wwiONBwall hGAC PZ qTT 1'' , ONBsatONBwall TTT ,
  • 4. Now that we have a relation between TONB and ZONB we must provide a stability model for the onset of nucleate boiling. one can formulate a model based on the metastable condition of nascent vapor nuclei ready to grow into the world. There are a number of correlation models for this stability line of TONB.  wwisat cbpL ONB ONB TT hACm PZ qT           1'' 
  • 5. Their equation is valid for water only, given by   0234.0 158.1 '' 463.0 1082 558.0 p p q TT ONBSATWW             gfgL SAT ONBSATWW hk Tq TT   '' 8 Bergles and Rohsenow (1964) obtained an equation for the wall superheat required for the onset of subcooled boiling.
  • 6.
  • 7. Subcooled Boiling • The onset of nucleate boiling indicates the location where the vapor can first exist in a stable state on the heater surface without condensing or vapor collapse. • As more energy is input into the liquid (i.e., downstream axially) these vapor bubbles can grow and eventually detach from the heater surface and enter the liquid. • Onset of nucleate boiling occurs at an axial location before the bulk liquid is saturated. • The point where the vapor bubbles could detach from the heater surface would also occur at an axial location before the bulk liquid is saturated. • This axial length over which boiling occurs when the bulk liquid is subcooled is called the "subcooled boiling" length. • This region may be large or small in actual size depending on the fluid properties, mass flow rate, pressures and heat flux. • It is a region of inherent nonequilibrium where the flowing mass quality and vapor void fraction are non-zero and positive even though the thermodynamic equilibrium quality and volume fraction would be zero; since the bulk temperature is below saturation.
  • 8. The first objective is to determine the amount of superheat necessary to allow vapor bubble departure and then the axial location where this would occur. A force balance to estimate the degree of superheat necessary for bubble departure. In this conceptual model the bubble radius rB, is assumed to be proportional to the distance to the tip of the vapor bubble,YB , away from the heated wall. One can then calculate this distance
  • 9.
  • 10. Two-Phase Flow Boiling Heat Transfer Coefficient • The local two-phase flow boiling heat transfer coefficient for evaporation inside a tube, hz, is defined as: satww z TT q h   '' where q” corresponds to the local heat flux from the tube wall into the fluid, Tsat is the local saturation temperature at the local saturation pressure psat Tww is the local wall temperature at the axial position along the evaporator tube, assumed to be uniform around the perimeter of the tube.
  • 11. Models for Heat Transfer Coefficient • Flow boiling models normally consider two heat transfer mechanisms to be important. • Nucleate boiling heat transfer ( hnb ) • The bubbles formed inside a tube may slide along the heated surface due to the axial bulk flow, and hence the microlayer evaporation process underneath the growing bubbles may also be affected. • Convective boiling heat transfer ( hcb ) • Convective boiling refers to the convective process between the heated wall and the liquid-phase.
  • 12. Superposition of Two Mechanisms • power law format, typical of superposition of two thermal mechanisms upon one another:  nn cb n nbtp hhh 1  Liquid Convection Nucleate Boiling n=1 n=2 n=3 n=∞ cb tp h h 
  • 13. Correlations for Two-phase Nucleate Flow Boiling • Chen Correlation • Shah Correlation • Gungor-Winterton Correlations • Steiner-Taborek Asymptotic Model
  • 14. Chen Correlation • Chen (1963, 1966) proposed the first flow boiling correlation for evaporation in vertical tubes to attain widespread use. • The local two-phase flow boiling coefficient htp is to be the weighted sum of the nucleate boiling contribution hnb and the convective contribution hcb • The temperature gradient in the liquid near the tube wall is steeper under forced convection conditions, relative to that in nucleate pool boiling. • The convection partially suppresses the nucleation of boiling sites and hence reduced the contribution of nucleate boiling. • On the other hand, the vapor formed by the evaporation process increased the liquid velocity and hence the convective heat transfer contribution tends to be increased relative to that of single-phase flow of the liquid.
  • 15. • Formulation of an expression to account for these two effects: cbnbtp hFhSh  • where the nucleate pool boiling correlation of Forster and Zuber is used to calculate the nucleate boiling heat transfer coefficient, FZ ; • the nucleate boiling suppression factor acting on hnb is S; • the turbulent flow correlation of Dittus-Boelter (1930) for tubular flows is used to calculate the liquid-phase convective heat transfer coefficient, • L ; and the increase in the liquid-phase convection due to the two-phase flow is given by his two-phase multiplier F. The
  • 16. Forster-Zuber correlation gives the nucleate pool boiling coefficient as: 75.024.0 79.079.079.079.0 49.045.079.0 00122.0 satsat gfgLL LpLL nb pT h ck h               satlocalwallsat TTT   satlocalwallsat ppp  
  • 17. The liquid-phase convective heat transfer coefficient hL is given by the Dittus-Boelter (1930) correlation for the fraction of liquid flowing alone in a tube of internal diameter d i , i.e. using a mass velocity of liquid, as:        d k pr k h L 4.08.0 Re023.0   L LpL L k cdxm      Re& 1 Re  The two-phase multiplier F of Chen is: 736.0 213.0 1        ttX F where the Martinelli parameter X tt is used for the two-phase effect on convection.
  • 18. where Xtt is defined as: 1.05.09.0 1                       g L L g tt x x X     Note: however, that when Xtt > 10, F is set equal to 1.0. The Chen boiling suppression factor S is             17.125.1 Re00000253.01 1 F S L
  • 19. )( satss TThq 
  • 20.
  • 21. Steiner-Taborek Asymptotic Model • Natural limitations to flow boiling coefficients. • Steiner and Taborek (1992) stated that the following limits should apply to evaporation in vertical tubes: • For heat fluxes below the threshold for the onset of nucleate boiling (q’’ <q’’ONB ), only the convective contribution should be counted and not the nucleate boiling contribution. • For very large heat fluxes, the nucleate boiling contribution should dominate. • When x = 0, htp should be equal to the single-phase liquid convective heat transfer coefficient when q’’ <q’’ONB
  • 22. • htp should correspond to that plus hnb when q’’ > q’’ONB . • When x = 1.0, htp should equal the vapor-phase convective coefficient hGt (the forced convection coefficient with the total flow as vapor).
  • 23. Boiling process in vertical tube according to Steiner-Taborek
  • 24. Boiling process in vertical tube according to Steiner-Taborek
  • 25. Circulation Ratio • The circulation ratio is defined as the ratio of mixture passing through the riser and the steam generated in it. • The circulation rate of a circuit is not known in advance. • The calculations are carried out with a number of assumed values of mixture flow rate. • The corresponding resistance in riser and down comer and motive head are calculated. • The flow rate at steady state is calculated. cycle ww m m ncirculatiok   
  • 26. Pressure Drop in Tubes • The pressure drop through a tube comprise several components:friciton, entrance loss, exit loss, fitting loss and hydrostatic. hydroexenfric ppppp 
  • 27. Water Wall Arrangement • Reliability of circulation of steam-water mixture. • Grouping of water wall tubes. • Each group will have tubes of similar geometry & heating conditions. • The ratio of flow area of down-comer to flow are of riser is an important factor, RA. • It is a measure of resistance to flow.
  • 28. • For high capacity Steam Generators, the steam generation per unit cross section is kept within the range. • High pressure (>9.5 Mpa) use a distributed down-comer system. • The water velocity in the down-comer is chosen with care. • For controlled circulation or assisted circulation it is necessary to install throttling orifices at the entrance of riser tubes. • The riser tubes are divided into several groups to reduce variation in heat absorption levels among them.
  • 29.
  • 30.
  • 31. Basic Geometry of A Furnace v c q LHVm V   A c grate q LHVm baA     b b q LHVm Hba  2 sff hh ,min,  sbb min
  • 32.
  • 33.
  • 34. Furnace Energy Balance Waterwalls Economizer Furnace Enthalpy to be lost by hot gases:  FEGTadgaspgas TTcm , 