Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Numerical Analysis
Visit my BlogSpot
http://ayaozaki.blogspot.com/2014/06/
fdm-numerical-solution-of-laplace.html
6/25/201...
A Finite Difference Method for
Laplace’s Equation
• A MATLAB code is introduced to solve Laplace
Equation.
• 2 computation...
A Finite Difference Method for
Laplace’s Equation (cont.)
• Example (Sheet 4)
• Grid: N=3
• B.C. shown
6/25/2014 Aya Zaki ...
I. Matrix computation method
• Example (Sheet 4)
• Grid: N=3
• The code generates the equations to be solved: 𝑨 𝑼 = 𝑩
6/25...
U = inv(A)*B;
%Re-arrange
for j= 1:N
for i=1:N
T(j+1,i+1)= U((j-
1)*N+i);
end
end
for i= 1:N
for j=1:N
k= (j-1)*N +i;
A(k,...
• T=
I. Matrix computation method(cont.)
6/25/2014 Aya Zaki 6
0 0 0 0 0
0 3.125 6.25 9.375 12.5
0 6.25 12.5 18.75 25
0 9.3...
I. Matrix computation method(cont.)
6/25/2014 Aya Zaki 7
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
0
10
20
30
40
50
Distance...
• Plotting T
I. Matrix computation method(cont.)
6/25/2014 Aya Zaki 8
contour(x,y,T);
Temperature plot (contourf)
0 0.05 0...
• N= 50
I. Matrix computation method(cont.)
6/25/2014 Aya Zaki 9
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
0
10
20
30
40
50
...
for k=1:20
for i=2:N+1
for j=2:N+1
un(i,j)=(un(i+1,j)+un(i-1,j)+un(i,j+1)+un(i,j-1))/4;
end
end
end
II. Iteration computat...
• T=
II. Iteration computation method
(cont.)
6/25/2014 Aya Zaki 11
0 0 0 0 0
0 3.125 6.25 9.375 12.5
0 6.25 12.5 18.75 25...
• Plotting T
II. Iteration computation method
(cont.)
6/25/2014 Aya Zaki 12
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
0
10
2...
• Plotting T
II. Iteration computation method
(cont.)
6/25/2014 Aya Zaki 13
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
0
10
2...
• Plotting T
II. Iteration computation method
(cont.)
6/25/2014 Aya Zaki 14
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
0
10
2...
A Finite Difference Method for
Laplace’s Equation (cont.)
• Example (Sheet 4)
• Grid: N=3
• B.C. with lower
edge insulated...
Lower Edge Insulated
• Example (Sheet 4)
• Grid: N=3
• B.C. with lower
edge insulated.
6/25/2014 Aya Zaki 16
50
37.5
25
12...
Lower Edge Insulated
• Plot of T
6/25/2014 Aya Zaki 17
N =3
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
0
10
20
30
40
50
Dista...
Lower Edge Insulated
• N = 100
6/25/2014 Aya Zaki 18
0
0.05
0.1
0.15
0.2
0
0.05
0.1
0.15
0.2
0
10
20
30
40
50
Distance x
N...
Lower Edge Insulated
• N = 100
6/25/2014 Aya Zaki 19
Temperature plot (contourf)
0 0.05 0.1 0.15 0.2
0
0.02
0.04
0.06
0.08...
Upcoming SlideShare
Loading in …5
×

FDM Numerical solution of Laplace Equation using MATLAB

11,758 views

Published on

Finite Difference Method Numerical solution of Laplace Equation using MATLAB. 2 computational methods are used.
U can vary the number of grid points and the boundary conditions

Published in: Engineering, Technology
  • Be the first to comment

FDM Numerical solution of Laplace Equation using MATLAB

  1. 1. Numerical Analysis Visit my BlogSpot http://ayaozaki.blogspot.com/2014/06/ fdm-numerical-solution-of-laplace.html 6/25/2014 Aya Zaki 1
  2. 2. A Finite Difference Method for Laplace’s Equation • A MATLAB code is introduced to solve Laplace Equation. • 2 computational methods are used: – Matrix method – Iteration method • Advantages of the proposed MATLAB code: – The number of the grid point can be freely chosen according to the required accuracy. – The boundary conditions can simply be changed. 6/25/2014 Aya Zaki 2
  3. 3. A Finite Difference Method for Laplace’s Equation (cont.) • Example (Sheet 4) • Grid: N=3 • B.C. shown 6/25/2014 Aya Zaki 3 50 37.5 25 12.5 37.52512.5 000 0 0 0 0 0 200mm 200mm T(i,j)
  4. 4. I. Matrix computation method • Example (Sheet 4) • Grid: N=3 • The code generates the equations to be solved: 𝑨 𝑼 = 𝑩 6/25/2014 Aya Zaki 4 k -4 1 0 1 0 0 0 0 0 1 -4 1 0 1 0 0 0 0 0 1 -4 0 0 1 0 0 0 1 0 0 -4 1 0 1 0 0 0 1 0 1 -4 1 0 1 0 0 0 1 0 1 -4 0 0 1 0 0 0 1 0 0 -4 1 0 0 0 0 0 1 0 1 -4 1 0 0 0 0 0 1 0 1 -4 0 0 -12.5 0 0 -25. 0 -12.5 -25.0 -75.0 T11 T21 T31 T21 T22 T23 T31 T32 T33 =
  5. 5. U = inv(A)*B; %Re-arrange for j= 1:N for i=1:N T(j+1,i+1)= U((j- 1)*N+i); end end for i= 1:N for j=1:N k= (j-1)*N +i; A(k,k)= -4; for m = i-1: 2:i+1 if ((m<1) ||(m>N)) B(k)= B(k) -T(m+1,j+1); else l = (j-1)*N+m; A(k,l)= 1; end end for n = j-1: 2:j+1 if ((n<1) ||(n>N)) B(k)= B(k)- T(i+1,n+1); else l = (n-1)*N+i; A(k,l)= 1; end end end end I. Matrix computation method(cont.) • Code 6/25/2014 Aya Zaki 5 N=3; T = zeros(N+2, N+2); x = linspace(0,200e-3, N+2); y = linspace(0,200e-3, N+2); %Boundary Conditions % Y- left T(:,N+2) = linspace(0,50,N+2) % Top T(N+2,:)= linspace(0,50,N+2) A , B
  6. 6. • T= I. Matrix computation method(cont.) 6/25/2014 Aya Zaki 6 0 0 0 0 0 0 3.125 6.25 9.375 12.5 0 6.25 12.5 18.75 25 0 9.375 18.75 28.125 37.5 0 12.5 25 37.5 50 50 37.5 25 12.5 37.52512.5 000 0 0 0 0 0 3.125 6.25 9.375 6.25 9.375 12.5 18.75 18.75 28.125
  7. 7. I. Matrix computation method(cont.) 6/25/2014 Aya Zaki 7 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance x Numerical solution computed with solving the Matrix. Distance y surf(x,y,T); • Plotting T
  8. 8. • Plotting T I. Matrix computation method(cont.) 6/25/2014 Aya Zaki 8 contour(x,y,T); Temperature plot (contourf) 0 0.05 0.1 0.15 0.2 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 5 10 15 20 25 30 35 40 45
  9. 9. • N= 50 I. Matrix computation method(cont.) 6/25/2014 Aya Zaki 9 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance x Numerical solution computed with solving the Matrix. Distance y
  10. 10. for k=1:20 for i=2:N+1 for j=2:N+1 un(i,j)=(un(i+1,j)+un(i-1,j)+un(i,j+1)+un(i,j-1))/4; end end end II. Iteration computation method • Code – Number of iterations = 20 – The better the initial guess, the faster the computation is. – For simplicity, the initial value for all points is chosen as zero. 6/25/2014 Aya Zaki 10 N=3; T = zeros(N+2, N+2); x = linspace(0,200e-3, N+2); y = linspace(0,200e-3, N+2); %Boundary Conditions % Y- left T(:,N+2) = linspace(0,50,N+2) % Top T(N+2,:)= linspace(0,50,N+2)
  11. 11. • T= II. Iteration computation method (cont.) 6/25/2014 Aya Zaki 11 0 0 0 0 0 0 3.125 6.25 9.375 12.5 0 6.25 12.5 18.75 25 0 9.375 18.75 28.125 37.5 0 12.5 25 37.5 50
  12. 12. • Plotting T II. Iteration computation method (cont.) 6/25/2014 Aya Zaki 12 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance x Numerical solution computed with 20 iteration. Distance y The same results were obtained as before. 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50
  13. 13. • Plotting T II. Iteration computation method (cont.) 6/25/2014 Aya Zaki 13 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance x Numerical solution computed with 20 iteration. Distance y The same results were obtained as before. 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50
  14. 14. • Plotting T II. Iteration computation method (cont.) 6/25/2014 Aya Zaki 14 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance x Numerical solution computed with 20 iteration. Distance y The same results were obtained as before.
  15. 15. A Finite Difference Method for Laplace’s Equation (cont.) • Example (Sheet 4) • Grid: N=3 • B.C. with lower edge insulated. 6/25/2014 Aya Zaki 15 50 37.5 25 12.5 37.52512.5 000 0 0 0 0 0 200mm 200mm T(i,j)
  16. 16. Lower Edge Insulated • Example (Sheet 4) • Grid: N=3 • B.C. with lower edge insulated. 6/25/2014 Aya Zaki 16 50 37.5 25 12.5 37.52512.5 0 0 0 0 T 0 5.0367 8.6453 8.6450 0 0 5.7508 10.4498 12.9673 12.5000 0 7.5166 14.4358 20.2743 25.0000 0 9.8797 19.5024 28.6942 37.5000 0 12.5000 25.0000 37.5000 50.0000
  17. 17. Lower Edge Insulated • Plot of T 6/25/2014 Aya Zaki 17 N =3 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance x Numerical solution computed. Distance y
  18. 18. Lower Edge Insulated • N = 100 6/25/2014 Aya Zaki 18 0 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance x Numerical solution computed. Distance y 0 0.05 0.1 0.15 0.2 0 10 20 30 40 50 Distance y Temperature(C) Plot of Temperature at different x points 0mm 100mm 200mm
  19. 19. Lower Edge Insulated • N = 100 6/25/2014 Aya Zaki 19 Temperature plot (contourf) 0 0.05 0.1 0.15 0.2 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0 5 10 15 20 25 30 35 40 45

×