개발자가 알아두면 좋은 5가지 AWS 인공 지능 서비스 깨알 지식 (윤석찬, AWS 테크에반젤리스트) :: AWS DevDay 2018

Amazon Web Services Korea
Amazon Web Services KoreaAmazon Web Services Korea
/
// /
2,3 16 0
“뭔가 클라우드 보다는
인공 지능을 공부해야 할
이 불안한 느낌은
무엇인가?”( )
페이스북을 돌아다니다 보니…
막 딥러닝과 인공 지능을 배우려는 당신…
대부분 이런 상황과 마주하게 됩니다!
1 .!
( )
C
A B )
https://aws.amazon.com/machine-learning/amis/
)
I
PD L
)
I
PD L
)
, ( )
. 45!
F A 6A A 5 A: 6 : : F A A AF A A 6 6 6
c 23 T /-. d iN 1 A AF gh
: K e f V I a X 7 L M b
AVX 512
72 vCPUs
“Skylake”
144 GiB memory
C5
12 Gbps to EBS
2X vCPUs
2X performance
3X throughput
2.4X memory
C4
36 vCPUs
“Haswell”
4 Gbps to EBS
60 GiB memory
- ® 2 A
I 1
5 /
e
V
!
I l X 5
http://github.com/01org/mkl-dnn
® - :
• l .02
• aKb ( c
• hI n n
• ( . 2 ) . ) ND
K A P L
• P Mi e
2 .
34 031 4 I 9 /
F B G
• 48313. 6 C 9 8 25 GP
• ) 0 1. B C 6 C B 0 C
• ,2 T 25 N
• , T 25 I U
V A( D 9B ,D 9B D 9B
0 - 4
4 () () - 2
만약… 인터넷에서 구매하시면?
3 2 0
p3.2xlarge
= $5 per hour
(서울 리전 기준)
p3.2xlarge x 20
= $100 per hour
(0 ) 1
남는 여유 자원을 70% 할인된 가격에
모델 훈련 시에만 사용한다면
= $30 per hour
-
!
$aws ec2-run-instances ami-b232d0db
--instance-count 1
--instance-type p2.8xlarge
--region us-east-1
--user-data my_data_training.sh
$aws ec2-stop-instances i-10a64379
A
/
45! 1
http://www.fast.ai/2018/08/10/fastai-diu-imagenet/
https://aws.amazon.com/blogs/machine-learning/new-speed-record-set-for-training-deep-learning-models-on-aws/
• ) ) 4
- $ 8 A
• WB T P $ 0
• 09 36 1. 4 36 D (% NA
1
4.75
8.5
12.25
16
1 4.75 8.5 12.25 16
Speedup(x)
# GPUs
Resnet 152
Inceptin V3
Alexnet
Ideal
P2.16xlarge (8 Nvidia Tesla K80 - 16 GPUs)
Synchronous SGD (Stochastic Gradient Descent)
91%
Efficiency
88%
Efficiency
16x P2.16xlarge by AWS CloudFormation
Mounted on Amazon EFS
# GPUs
P G
A N M
MXNET 공부하세요…
아직은 블루오션입니다!
https://nucleusresearch.com/research/single/guidebook-tensorflow-aws/
In analyzing the experiences of researchers
supporting more than 388 unique projects, Nucleus
found that 88 percent of cloud-based TensorFlow
projects are running on Amazon Web Services.
“
클라우드 기반 텐서플로 프로젝트의
88%가 AWS에서 구동 되고 있다는 사실!
막 딥러닝으로 프로젝트를 시작하는 분들…
대부분 이런 상황과 마주하게 됩니다!
I
P
(
)
A
!
지겨운 데이터 전처리… 모델 튜닝… 될때까지 계속 반복&반복
, - H
J N
, -
, - -
A
H
https://aws.amazon.com/ko/sagemaker
.
.
K D !
https://medium.com/datadriveninvestor/auto-model-tuning-for-keras-on-amazon-sagemaker-plant-seedling-dataset-7b591334501e
https://aws.amazon.com/blogs/machine-learning/amazon-sagemaker-automatic-model-tuning-produces-better-models-faster/
248 9 =
6 1 C
7CG9 5 G 1 ) C
2C G 1 ) 0 $ ) 1 */
348 ) 9 =
6 1 / C C
7CG9 5 G 1 * C
2C G 1 ( ) $ * 1 * ./
HN C
) (
S , 5 , I m
z k kGe b
M m k L a
o A g sW
M . 2
0 5 n . g k r A
!
G A
C
)(
( ) .
https://www.youtube.com/watch?v=dpatdO2uPCA
( . .) )
- :
,
+
+
+
© 김태훈, 책 읽어주는 딥러닝 https://carpedm20.github.io/tacotron/
공개된 Deep Voice2 + Tacotron을 쓰면 가능합니다!
-
© 김태훈, 책 읽어주는 딥러닝 https://carpedm20.github.io/tacotron/
,
© 네오사피언스, http://icepick.ai
그런데 … 내가 왜 이러고 있을까?
Github에는 딥러닝 모델은 차고 넘치고
내가 필요한 건 쓸만한 TTS API 뿐~
, .
-, - 2 5 !
• ,
A A
•
I A )
• ( (
P
Matthew
Takumi
Vicki
Aditi
3
• ) 1 M
1 C ,,
• A W C 1
( ,. L
S. 13
한국어 음성
직접 들어보세요!
. !
!
4 30 2 6
1 6,
총 2.4달러
1 M ) P5
5 ( , 2 - , 3
https://aws.amazon.com/ko/polly/pricing/
A
K 1 0 % 4
I 4 2
6 D A 4 S
2
K K
% 3 2 2% ,
/ 9 5
K S 5
%
%, 4 5
4 7
https://aws.amazon.com/ko/polly/customers/
A C
• I
•
• I B
• AP
•
• C
•
• - ! A
.
Cloud Gem Portal Plugin - Text to Speech
https://aws.amazon.com/ko/lumberyard/
.
Polly를 이용하여
게임 개발 시 다양한 음성 가이드 추가 가능
/ /. .
3
D A , /
https://aws.amzon.com/ko/sumerian
/ .
Polly를 이용하여
3D 콘텐츠 제작 시 다양한 음성 가이드 추가 가능
.
! &
) OR A
C (
C(/ ,
https://aws.amazon.com/ko/rekognition/
-
"SourceImageFace": {
"BoundingBox": {
"Width": ...,
"Height": ...,
"Left": ...,
"Top": ...
},
"Confidence": 99.99964141845703
},
"FaceMatches": [
{
"Similarity": 95,
"Face": {
"Landmarks": [
{
"Type": "eyeLeft",
"X": ...
"Y": ...
},
...
},
]
FaceMatches
CompareFace
-
-
"Persons": [
{
"Timestamp": number,
"Person":
{
"Index": number,
"BoundingBox":
{
"Width": number,
"Top": number,
"Height": number,
"Left": number
},
"Face":
{
"BoundingBox": { ... },
"Landmarks": { ... },
"Pose": { ... },
"Quality": { ... },
"Confidence": number
}
},
...
GetPersonTracking
StartPersonTracking
-
Live Street Camera Amazon Kinesis Video Streams
1. Camera-captured video
streams are processed by
Kinesis Video Streams
End User
3. End user is notified
in case of face matches
Amazon SNS AWS Lambda Amazon Kinesis
Streams
Amazon Rekognition Video Face collection
2. Rekognition Video analyses the
video and searches faces on screen
against a collection of millions of faces
T A
T
8 E
2
T C R J
C 0
S C
N M
1 E
E
T P N
https://aws.amazon.com/ko/rekognition/customers/
여기서 보너스… 이런 분들 있으시죠?
!
N dW g 3 ,
P WT
l o
n i P VL A
3 W a F
, T
d W Dl dS NC
m VL A
Amazon
GuardDuty
-
-
비트코인 마이닝도 바로 탐지해 줍니다 ㅠㅠ
여러분 보안에 신경씁시다!
2
Data Sources
VPC flow logs
DNS Logs
CloudTrail
Events
Amazon
CloudWatch
rules
Amazon
GuardDuty
AWS
StepFunctions
Lambda
function
End UserAmazon SNS
3. End user is notified in case of risk
Lambda
function
EC2 Systems
Manager
EC2
2. EC2 System Manager fixes compromised EC2
Instances and credentials by documents
1. Guardduty continuously analyzes
data sources and intelligently detect
threats and sends CloudWatch Logs
!
1 + 0 5 5
1 + 0 5 5
인공 지능만 살펴봐도…
KERAS
AWS DEEP LEARNING AMI
AMAZON SAGEMAKER
REKOGNITION REKOGNITION VIDEO POLLY TRANSCRIBE TRANSLATE COMPREHEND LEX
AWS DEEPLENS AMAZON MACHINE
LEARNING
SPARK & EMR AMAZON
MECHANICAL TURK
GPU ( P3 INSTANCES) CPU (C5) IOT (GREENGRASS) MOBILE
G A
E C
인공 지능 기술은 대기업의 전유물이 아닙니다!
!
• https://aws.amazon.com/ko/blogs/korea/deep-learning-on-aws-wanted-mathpresso-buzzbill/
• https://aws.amazon.com/ko/blogs/korea/hot-ai-startups-vuno-mathpresso-maru24-actionpower-elice/
C
A C
R Q
&R O
,
?
,
2
.4
4
3
3
1
.
AWS IoT
Amazon S3
AWS Lambda
Amazon
Rekognition
Amazon
Polly
43
2, 43
1
.
.
) 4A
d
) 4A
m
I
f
W
TRg
TRg M
a n o
e ck
i
L
à i lb
TRg P o S
(1 2 352
( 2
( 2
A
( 2
C
(1
( 2
2A
( 2
2 2A
( 2
2 4 3
( 2 2 2
.
!
#
딥러닝과 인공 지능을 배우려는 당신…
지금 시작하세요!
http://bit.ly/awskr-ml-credits
L SW R . U - 12
U , ,W A , 12
딥러닝과 인공 지능을 배우려는 당신…
특별 선물!
http://bit.ly/awskr-feedback
AWS
Only
A . :
S . : ./ / -
. ::: - : -
1 of 68

Recommended

개발자가 알아두면 좋을 5가지 AWS 인공 지능 깨알 지식 - 윤석찬 (AWS 테크 에반젤리스트) by
개발자가 알아두면 좋을 5가지 AWS 인공 지능 깨알 지식 - 윤석찬 (AWS 테크 에반젤리스트)개발자가 알아두면 좋을 5가지 AWS 인공 지능 깨알 지식 - 윤석찬 (AWS 테크 에반젤리스트)
개발자가 알아두면 좋을 5가지 AWS 인공 지능 깨알 지식 - 윤석찬 (AWS 테크 에반젤리스트)Amazon Web Services Korea
4.4K views64 slides
AWS re:Invent 특집 세미나 - (1) 컴퓨팅 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트) by
AWS re:Invent 특집 세미나 - (1) 컴퓨팅 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)AWS re:Invent 특집 세미나 - (1) 컴퓨팅 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)
AWS re:Invent 특집 세미나 - (1) 컴퓨팅 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)Amazon Web Services Korea
5.7K views46 slides
AWS와 Alexa 음성 인식 플랫폼을 통한 비즈니스 기회::윤석찬::AWS Summit Seoul 2018 by
AWS와 Alexa 음성 인식 플랫폼을 통한 비즈니스 기회::윤석찬::AWS Summit Seoul 2018 AWS와 Alexa 음성 인식 플랫폼을 통한 비즈니스 기회::윤석찬::AWS Summit Seoul 2018
AWS와 Alexa 음성 인식 플랫폼을 통한 비즈니스 기회::윤석찬::AWS Summit Seoul 2018 Amazon Web Services Korea
4.6K views48 slides
Picking the right AWS backend for your application (September 2017) by
Picking the right AWS backend for your application (September 2017)Picking the right AWS backend for your application (September 2017)
Picking the right AWS backend for your application (September 2017)Julien SIMON
1.1K views36 slides
AWS における サーバーレスの基礎からチューニングまで by
AWS における サーバーレスの基礎からチューニングまでAWS における サーバーレスの基礎からチューニングまで
AWS における サーバーレスの基礎からチューニングまで崇之 清水
4.7K views72 slides
2018512 AWS上での機械学習システムの構築とSageMaker by
2018512 AWS上での機械学習システムの構築とSageMaker2018512 AWS上での機械学習システムの構築とSageMaker
2018512 AWS上での機械学習システムの構築とSageMakerYasuhiro Matsuo
3K views70 slides

More Related Content

What's hot

サーバーレスの現実と夢と今 by
サーバーレスの現実と夢と今サーバーレスの現実と夢と今
サーバーレスの現実と夢と今Hiroyuki Hara
1.3K views28 slides
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트) by
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)Amazon Web Services Korea
6.2K views40 slides
Deep Learning with AWS (November 2016) by
Deep Learning with AWS (November 2016)Deep Learning with AWS (November 2016)
Deep Learning with AWS (November 2016)Julien SIMON
1.1K views12 slides
Building serverless applications (April 2018) by
Building serverless applications (April 2018)Building serverless applications (April 2018)
Building serverless applications (April 2018)Julien SIMON
627 views34 slides
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트) by
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기  - 윤석찬 (AWS 테크에반젤리스트)Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기  - 윤석찬 (AWS 테크에반젤리스트)
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트)Amazon Web Services Korea
14.3K views41 slides
Kubernetes on AWS by
Kubernetes on AWSKubernetes on AWS
Kubernetes on AWSAmazon Web Services
551 views29 slides

What's hot(20)

サーバーレスの現実と夢と今 by Hiroyuki Hara
サーバーレスの現実と夢と今サーバーレスの現実と夢と今
サーバーレスの現実と夢と今
Hiroyuki Hara1.3K views
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트) by Amazon Web Services Korea
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
AWS Batch를 통한 손쉬운 일괄 처리 작업 관리하기 - 윤석찬 (AWS 테크에반젤리스트)
Deep Learning with AWS (November 2016) by Julien SIMON
Deep Learning with AWS (November 2016)Deep Learning with AWS (November 2016)
Deep Learning with AWS (November 2016)
Julien SIMON1.1K views
Building serverless applications (April 2018) by Julien SIMON
Building serverless applications (April 2018)Building serverless applications (April 2018)
Building serverless applications (April 2018)
Julien SIMON627 views
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트) by Amazon Web Services Korea
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기  - 윤석찬 (AWS 테크에반젤리스트)Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기  - 윤석찬 (AWS 테크에반젤리스트)
Amazon SageMaker을 통한 손쉬운 Jupyter Notebook 활용하기 - 윤석찬 (AWS 테크에반젤리스트)
Speed up your Machine Learning workflows with build-in algorithms by Julien SIMON
Speed up your Machine Learning workflows with build-in algorithmsSpeed up your Machine Learning workflows with build-in algorithms
Speed up your Machine Learning workflows with build-in algorithms
Julien SIMON662 views
(GAM304) How Riot Games re:Invented Their AWS Model | AWS re:Invent 2014 by Amazon Web Services
(GAM304) How Riot Games re:Invented Their AWS Model | AWS re:Invent 2014(GAM304) How Riot Games re:Invented Their AWS Model | AWS re:Invent 2014
(GAM304) How Riot Games re:Invented Their AWS Model | AWS re:Invent 2014
Amazon Web Services6.8K views
ABD322_Implementing a Flight Simulator Interface Using AI, Virtual Reality, a... by Amazon Web Services
ABD322_Implementing a Flight Simulator Interface Using AI, Virtual Reality, a...ABD322_Implementing a Flight Simulator Interface Using AI, Virtual Reality, a...
ABD322_Implementing a Flight Simulator Interface Using AI, Virtual Reality, a...
Cloud Native Data Pipelines (DataEngConf SF 2017) by Sid Anand
Cloud Native Data Pipelines (DataEngConf SF 2017)Cloud Native Data Pipelines (DataEngConf SF 2017)
Cloud Native Data Pipelines (DataEngConf SF 2017)
Sid Anand866 views
Advanced Scheduling with Amazon ECS (September 2017) by Julien SIMON
Advanced Scheduling with Amazon ECS (September 2017)Advanced Scheduling with Amazon ECS (September 2017)
Advanced Scheduling with Amazon ECS (September 2017)
Julien SIMON555 views
Apache Arrowフォーマットはなぜ速いのか by Kouhei Sutou
Apache Arrowフォーマットはなぜ速いのかApache Arrowフォーマットはなぜ速いのか
Apache Arrowフォーマットはなぜ速いのか
Kouhei Sutou506 views
Deep Learning for Developers (Advanced Workshop) by Amazon Web Services
Deep Learning for Developers (Advanced Workshop)Deep Learning for Developers (Advanced Workshop)
Deep Learning for Developers (Advanced Workshop)
CTO Night & Days 2015 Winter - AWS Mobile Development by 崇之 清水
CTO Night & Days 2015 Winter - AWS Mobile DevelopmentCTO Night & Days 2015 Winter - AWS Mobile Development
CTO Night & Days 2015 Winter - AWS Mobile Development
崇之 清水3.1K views
Optimize your Machine Learning Workloads on AWS (July 2019) by Julien SIMON
Optimize your Machine Learning Workloads on AWS (July 2019)Optimize your Machine Learning Workloads on AWS (July 2019)
Optimize your Machine Learning Workloads on AWS (July 2019)
Julien SIMON215 views
Deep Learning을 위한 AWS 기반 인공 지능(AI) 서비스 (윤석찬) by Amazon Web Services Korea
Deep Learning을 위한  AWS 기반 인공 지능(AI) 서비스 (윤석찬)Deep Learning을 위한  AWS 기반 인공 지능(AI) 서비스 (윤석찬)
Deep Learning을 위한 AWS 기반 인공 지능(AI) 서비스 (윤석찬)

Similar to 개발자가 알아두면 좋은 5가지 AWS 인공 지능 서비스 깨알 지식 (윤석찬, AWS 테크에반젤리스트) :: AWS DevDay 2018

Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트) by
Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트) Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트)
Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트) Channy Yun
4.5K views55 slides
Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ... by
Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ...Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ...
Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ...Claus Ibsen
364 views86 slides
Building prediction models with Amazon Redshift and Amazon ML by
Building prediction models with  Amazon Redshift and Amazon MLBuilding prediction models with  Amazon Redshift and Amazon ML
Building prediction models with Amazon Redshift and Amazon MLJulien SIMON
3.9K views30 slides
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트) by
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)Amazon Web Services Korea
7.1K views55 slides
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트) by
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)Amazon Web Services Korea
5.3K views52 slides
Systems Bioinformatics Workshop Keynote by
Systems Bioinformatics Workshop KeynoteSystems Bioinformatics Workshop Keynote
Systems Bioinformatics Workshop KeynoteDeepak Singh
1.7K views124 slides

Similar to 개발자가 알아두면 좋은 5가지 AWS 인공 지능 서비스 깨알 지식 (윤석찬, AWS 테크에반젤리스트) :: AWS DevDay 2018(20)

Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트) by Channy Yun
Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트) Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트)
Kubernates를 위한 Chaos Engineering in Action :: 윤석찬 (AWS 테크에반젤리스트)
Channy Yun4.5K views
Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ... by Claus Ibsen
Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ...Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ...
Red Hat Nordics 2020 - Apache Camel 3 the next generation of enterprise integ...
Claus Ibsen364 views
Building prediction models with Amazon Redshift and Amazon ML by Julien SIMON
Building prediction models with  Amazon Redshift and Amazon MLBuilding prediction models with  Amazon Redshift and Amazon ML
Building prediction models with Amazon Redshift and Amazon ML
Julien SIMON3.9K views
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트) by Amazon Web Services Korea
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)
아마존의 딥러닝 기술 활용 사례 - 윤석찬 (AWS 테크니컬 에반젤리스트)
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트) by Amazon Web Services Korea
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
데이터 기반 의사결정을 통한 비지니스 혁신 - 윤석찬 (AWS 테크에반젤리스트)
Systems Bioinformatics Workshop Keynote by Deepak Singh
Systems Bioinformatics Workshop KeynoteSystems Bioinformatics Workshop Keynote
Systems Bioinformatics Workshop Keynote
Deepak Singh1.7K views
Build, train, and deploy Machine Learning models at scale (May 2018) by Julien SIMON
Build, train, and deploy Machine Learning models at scale (May 2018)Build, train, and deploy Machine Learning models at scale (May 2018)
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON1.1K views
SouJava May 2020: Apache Camel 3 - the next generation of enterprise integration by Claus Ibsen
SouJava May 2020: Apache Camel 3 - the next generation of enterprise integrationSouJava May 2020: Apache Camel 3 - the next generation of enterprise integration
SouJava May 2020: Apache Camel 3 - the next generation of enterprise integration
Claus Ibsen397 views
20180309 DLIもくもく会 Deep Learning on AWS by Yasuhiro Matsuo
20180309 DLIもくもく会 Deep Learning on AWS20180309 DLIもくもく会 Deep Learning on AWS
20180309 DLIもくもく会 Deep Learning on AWS
Yasuhiro Matsuo523 views
아마존의 딥러닝 기술 활용 사례 by NAVER Engineering
아마존의 딥러닝 기술 활용 사례아마존의 딥러닝 기술 활용 사례
아마존의 딥러닝 기술 활용 사례
NAVER Engineering3.8K views
Build, train, and deploy Machine Learning models at scale (May 2018) by Julien SIMON
Build, train, and deploy Machine Learning models at scale (May 2018)Build, train, and deploy Machine Learning models at scale (May 2018)
Build, train, and deploy Machine Learning models at scale (May 2018)
Julien SIMON1.2K views
Serverless in production, an experience report by Yan Cui
Serverless in production, an experience reportServerless in production, an experience report
Serverless in production, an experience report
Yan Cui1.3K views
AWS re:Invent 특집 세미나 - (2) DB/분석 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트) by Amazon Web Services Korea
AWS re:Invent 특집 세미나 - (2) DB/분석 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)AWS re:Invent 특집 세미나 - (2) DB/분석 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)
AWS re:Invent 특집 세미나 - (2) DB/분석 분야 신규 서비스 요약 :: 윤석찬 (AWS 테크에반젤리스트)
WWCode Dallas - Kubernetes: Learning from Zero to Production by Rosemary Wang
WWCode Dallas - Kubernetes: Learning from Zero to ProductionWWCode Dallas - Kubernetes: Learning from Zero to Production
WWCode Dallas - Kubernetes: Learning from Zero to Production
Rosemary Wang356 views
State of Akka 2017 - The best is yet to come by Konrad Malawski
State of Akka 2017 - The best is yet to comeState of Akka 2017 - The best is yet to come
State of Akka 2017 - The best is yet to come
Konrad Malawski5.5K views
Serverless in production, an experience report (FullStack 2018) by Yan Cui
Serverless in production, an experience report (FullStack 2018)Serverless in production, an experience report (FullStack 2018)
Serverless in production, an experience report (FullStack 2018)
Yan Cui359 views
How We Learned To Love The Data Center Operating System by saulius_vl
How We Learned To Love The Data Center Operating SystemHow We Learned To Love The Data Center Operating System
How We Learned To Love The Data Center Operating System
saulius_vl122 views
Running Docker clusters on AWS (November 2016) by Julien SIMON
Running Docker clusters on AWS (November 2016)Running Docker clusters on AWS (November 2016)
Running Docker clusters on AWS (November 2016)
Julien SIMON755 views
AWS Compute Overview: Servers, Containers, Serverless, and Batch | AWS Public... by Amazon Web Services
AWS Compute Overview: Servers, Containers, Serverless, and Batch | AWS Public...AWS Compute Overview: Servers, Containers, Serverless, and Batch | AWS Public...
AWS Compute Overview: Servers, Containers, Serverless, and Batch | AWS Public...

More from Amazon Web Services Korea

AWS Modern Infra with Storage Roadshow 2023 - Day 2 by
AWS Modern Infra with Storage Roadshow 2023 - Day 2AWS Modern Infra with Storage Roadshow 2023 - Day 2
AWS Modern Infra with Storage Roadshow 2023 - Day 2Amazon Web Services Korea
172 views146 slides
AWS Modern Infra with Storage Roadshow 2023 - Day 1 by
AWS Modern Infra with Storage Roadshow 2023 - Day 1AWS Modern Infra with Storage Roadshow 2023 - Day 1
AWS Modern Infra with Storage Roadshow 2023 - Day 1Amazon Web Services Korea
102 views173 slides
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ... by
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...Amazon Web Services Korea
304 views24 slides
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ... by
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon Web Services Korea
219 views86 slides
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev... by
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Web Services Korea
218 views81 slides
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci... by
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Amazon Web Services Korea
473 views65 slides

More from Amazon Web Services Korea(20)

사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ... by Amazon Web Services Korea
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
사례로 알아보는 Database Migration Service : 데이터베이스 및 데이터 이관, 통합, 분리, 분석의 도구 - 발표자: ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ... by Amazon Web Services Korea
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon DocumentDB - Architecture 및 Best Practice (Level 200) - 발표자: 장동훈, Sr. ...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev... by Amazon Web Services Korea
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Amazon Elasticache - Fully managed, Redis & Memcached Compatible Service (Lev...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci... by Amazon Web Services Korea
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
Internal Architecture of Amazon Aurora (Level 400) - 발표자: 정달영, APAC RDS Speci...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A... by Amazon Web Services Korea
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
[Keynote] 슬기로운 AWS 데이터베이스 선택하기 - 발표자: 강민석, Korea Database SA Manager, WWSO, A...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::... by Amazon Web Services Korea
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Demystify Streaming on AWS - 발표자: 이종혁, Sr Analytics Specialist, WWSO, AWS :::...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal... by Amazon Web Services Korea
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon EMR - Enhancements on Cost/Performance, Serverless - 발표자: 김기영, Sr Anal...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance... by Amazon Web Services Korea
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Amazon OpenSearch - Use Cases, Security/Observability, Serverless and Enhance...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,... by Amazon Web Services Korea
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Enabling Agility with Data Governance - 발표자: 김성연, Analytics Specialist, WWSO,...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature... by Amazon Web Services Korea
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
Amazon Redshift Deep Dive - Serverless, Streaming, ML, Auto Copy (New feature...
From Insights to Action, How to build and maintain a Data Driven Organization... by Amazon Web Services Korea
From Insights to Action, How to build and maintain a Data Driven Organization...From Insights to Action, How to build and maintain a Data Driven Organization...
From Insights to Action, How to build and maintain a Data Driven Organization...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special... by Amazon Web Services Korea
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
Amazon DynamoDB - Use Cases and Cost Optimization - 발표자: 이혁, DynamoDB Special...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L... by Amazon Web Services Korea
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
LG전자 - Amazon Aurora 및 RDS 블루/그린 배포를 이용한 데이터베이스 업그레이드 안정성 확보 - 발표자: 이은경 책임, L...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti... by Amazon Web Services Korea
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
KB국민카드 - 클라우드 기반 분석 플랫폼 혁신 여정 - 발표자: 박창용 과장, 데이터전략본부, AI혁신부, KB카드│강병억, Soluti...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ... by Amazon Web Services Korea
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
SK Telecom - 망관리 프로젝트 TANGO의 오픈소스 데이터베이스 전환 여정 - 발표자 : 박승전, Project Manager, ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ... by Amazon Web Services Korea
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
코리안리 - 데이터 분석 플랫폼 구축 여정, 그 시작과 과제 - 발표자: 김석기 그룹장, 데이터비즈니스센터, 메가존클라우드 ::: AWS ...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노... by Amazon Web Services Korea
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
LG 이노텍 - Amazon Redshift Serverless를 활용한 데이터 분석 플랫폼 혁신 과정 - 발표자: 유재상 선임, LG이노...
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기 by Amazon Web Services Korea
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기
AWS Summit Seoul 2023 | Amazon Neptune 및 Elastic을 이용한 추천 서비스 및 검색 플랫폼 구축하기

Recently uploaded

iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...Bernd Ruecker
26 views69 slides
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...James Anderson
33 views32 slides
Top 10 Strategic Technologies in 2024: AI and Automation by
Top 10 Strategic Technologies in 2024: AI and AutomationTop 10 Strategic Technologies in 2024: AI and Automation
Top 10 Strategic Technologies in 2024: AI and AutomationAutomationEdge Technologies
14 views14 slides
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 by
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院IttrainingIttraining
34 views8 slides
Tunable Laser (1).pptx by
Tunable Laser (1).pptxTunable Laser (1).pptx
Tunable Laser (1).pptxHajira Mahmood
23 views37 slides
Web Dev - 1 PPT.pdf by
Web Dev - 1 PPT.pdfWeb Dev - 1 PPT.pdf
Web Dev - 1 PPT.pdfgdsczhcet
55 views45 slides

Recently uploaded(20)

iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas... by Bernd Ruecker
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
iSAQB Software Architecture Gathering 2023: How Process Orchestration Increas...
Bernd Ruecker26 views
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N... by James Anderson
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
GDG Cloud Southlake 28 Brad Taylor and Shawn Augenstein Old Problems in the N...
James Anderson33 views
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院 by IttrainingIttraining
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
【USB韌體設計課程】精選講義節錄-USB的列舉過程_艾鍗學院
Web Dev - 1 PPT.pdf by gdsczhcet
Web Dev - 1 PPT.pdfWeb Dev - 1 PPT.pdf
Web Dev - 1 PPT.pdf
gdsczhcet55 views
Case Study Copenhagen Energy and Business Central.pdf by Aitana
Case Study Copenhagen Energy and Business Central.pdfCase Study Copenhagen Energy and Business Central.pdf
Case Study Copenhagen Energy and Business Central.pdf
Aitana12 views
Piloting & Scaling Successfully With Microsoft Viva by Richard Harbridge
Piloting & Scaling Successfully With Microsoft VivaPiloting & Scaling Successfully With Microsoft Viva
Piloting & Scaling Successfully With Microsoft Viva
6g - REPORT.pdf by Liveplex
6g - REPORT.pdf6g - REPORT.pdf
6g - REPORT.pdf
Liveplex9 views
The details of description: Techniques, tips, and tangents on alternative tex... by BookNet Canada
The details of description: Techniques, tips, and tangents on alternative tex...The details of description: Techniques, tips, and tangents on alternative tex...
The details of description: Techniques, tips, and tangents on alternative tex...
BookNet Canada121 views
Special_edition_innovator_2023.pdf by WillDavies22
Special_edition_innovator_2023.pdfSpecial_edition_innovator_2023.pdf
Special_edition_innovator_2023.pdf
WillDavies2216 views
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors by sugiuralab
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab15 views
PharoJS - Zürich Smalltalk Group Meetup November 2023 by Noury Bouraqadi
PharoJS - Zürich Smalltalk Group Meetup November 2023PharoJS - Zürich Smalltalk Group Meetup November 2023
PharoJS - Zürich Smalltalk Group Meetup November 2023
Noury Bouraqadi120 views

개발자가 알아두면 좋은 5가지 AWS 인공 지능 서비스 깨알 지식 (윤석찬, AWS 테크에반젤리스트) :: AWS DevDay 2018