Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Credit Risk Management Problems

5,479 views

Published on

Simple problems in Credit risk management

Published in: Technology, Business
  • Be the first to comment

  • Be the first to like this

Credit Risk Management Problems

  1. 1. Problems in Credit Risk Management September 16, 2009 By A. V. Vedpuriswar
  2. 2. Problem <ul><li>There are 10 bonds in a portfolio. The probability of default for each of the bonds over the coming year is 5%.These probabilities are independent of each other. What is the probability that exactly one bond defaults? </li></ul>
  3. 3. <ul><li>Required probability </li></ul><ul><li>= (10)(.05)(.95) 9 </li></ul><ul><li>= .3151 </li></ul><ul><li>= 31.51% </li></ul>
  4. 4. Problem <ul><li>A CDS portfolio consists of 5 bonds with zero default correlation. One year default probabilities are : 1%, 2%, 5%,10% and 15% respectively. What is the probability that that the protection seller will not have to pay compensation? </li></ul>
  5. 5. <ul><li>Probability of no default </li></ul><ul><li>= (.99)(.98)(.95)(.90)(.85) </li></ul><ul><li>= .7051 </li></ul><ul><li>= 70.51% </li></ul>
  6. 6. Problem <ul><li>If the probability of default is 6% in year 1 and 8% in year 2, what is the cumulative probability of default during the two years? </li></ul>
  7. 7. Solution <ul><li>Probability of default not happening in both years </li></ul><ul><li>=(.94) (.92) = = .8648 </li></ul><ul><li>Required probability = 1 - .8648 = .1352 </li></ul><ul><li>= 13.52% </li></ul>
  8. 8. Problem <ul><li>The 5 year cumulative probability of default for a bond is 15%. The marginal probability of default for the sixth year is 10%. What is the six year cumulative probability of default? </li></ul>
  9. 9. <ul><li>Required probability </li></ul><ul><li>= 1- (.85)(.90) </li></ul><ul><li>= .235 </li></ul><ul><li>= 23.5% </li></ul>
  10. 10. Problem <ul><li>Calculate the implied probability of default if the one year T Bill yield is 9% and a 1 year zero coupon corporate bond is fetching 15.5%. </li></ul>
  11. 11. Solution <ul><li>Let the probability of default be (1-p) </li></ul><ul><li>Returns from corporate bond = 1.155p + (0) (1-p) </li></ul><ul><li>Returns from treasury = 1.09 </li></ul><ul><ul><li>1.155p = 1.09 </li></ul></ul><ul><ul><li>p = 1.09/1.155 = .9437 </li></ul></ul><ul><li>Probability of default = .0563 = 5.63% </li></ul>
  12. 12. Problem <ul><li>In the earlier problem, if the recovery is 80% in the case of a default, what is the default probability? </li></ul>
  13. 13. Solution <ul><li>1.155p + (.80) (1.155) (1 - p) = 1.09 </li></ul><ul><li>.231p = 0.166 </li></ul><ul><li>p = .7186 </li></ul><ul><li>1 - p = .2814 </li></ul>
  14. 14. Problem <ul><li>If 1 year and 2 year T Bills are fetching 11% and 12% and 1 year and 2 year corporate bonds are yielding 16.5% and 17%, what is the marginal probability of default for the corporate bond in the second year? </li></ul>
  15. 15. Solution <ul><li>Yield during the 2 nd year can be worked out as follows: </li></ul><ul><li>Corporate bonds: (1.165) (1+i) = 1.17 2 </li></ul><ul><li> i = 17.5% </li></ul><ul><li>Treasury : (1.11) (1+i) = (1.12) 2 </li></ul><ul><li> i = 13.00% </li></ul><ul><li> p (1.175) + (1-p) (0) = 1.13 </li></ul><ul><li> p = .9617 </li></ul><ul><li> Default probability = 1 - .9617 </li></ul><ul><li>= 3.83% </li></ul>
  16. 16. Problem <ul><li>The spread between the yield on a 3 year corporate bond and the yield on a similar risk free bond is 50 basis points. The recovery rate is 30%. What is the cumulative probability of default over the three year period? </li></ul>
  17. 17. Solution <ul><li>Spread = (Probability of default) (loss given default) </li></ul><ul><li>or .005 = (p) (1-.3) </li></ul><ul><li>or p = = .00714 = .71% per year </li></ul><ul><li>No default over 3 years = (.9929) (.9929) (.9929) = .9789 </li></ul><ul><li>So cumulative probability of default = 1 – 9789 = .0211 = 2.11% </li></ul>
  18. 18. Problem <ul><li>The spread between the yield on a 5 year bond and that on a similar risk free bond is 80 basis points. If the loss given default is 60%, estimate the average probability of default over the 5 year period. If the spread is 70 basis points for a 3 year bond, what is the probability of default over years 4, 5? </li></ul>
  19. 19. Solution <ul><li>Probability of default over the 5 year period = = .0133 </li></ul><ul><li>Probability of default over the 3 year period = = .01167 </li></ul><ul><li>(1-.0133) 5 = (1-.01167) 3 (1-p) 2 </li></ul><ul><li>or (1-p) 2 = = .9688 </li></ul><ul><li>or 1 – p = .9842 </li></ul><ul><li>or p = .0158 = 1.58% </li></ul>
  20. 20. Problem <ul><li>A four year corporate bond provides a 4% semi annual coupon and yields 5% while the risk free bond, also with 4% coupon yields 3% with continuous compounding. </li></ul><ul><li>Defaults may take place at the end of each year. </li></ul><ul><li>The recovery rate is 30% of the face value. </li></ul><ul><li>What is the risk neutral default probability? </li></ul>
  21. 21. Solution <ul><li>Risk free bond </li></ul><ul><li>So expected value of losses = 103.65 – 96.21 = 7.44 </li></ul>Risk free bond Corporate bond Year Cash flow PV factor e -(.03)t PV PV factor e -(.05)t PV .5 2 .9851 1.9702 .9754 1.9508 1.0 2 .9704 1.9408 .9512 1.9024 1.5 2 .9560 1.9120 .9277 1.8554 2.0 2 .9418 1.8836 .9048 1.8096 2.5 2 .9277 1.8554 .8825 1.7650 3.0 2 .9139 1.8278 .8607 1.7214 3.5 2 .9003 1.8006 .8395 1.679 4.0 102 .8869 90.4638 .8187 83.51 103.6542 96.21
  22. 22. <ul><li>Let the default probability per year = Q. </li></ul><ul><li>The recovery rate is 30 %. </li></ul><ul><li>So if the notional principal is 100, we can recover 30. </li></ul><ul><li>We can work out the present value of losses assuming the default may happen at the end of years 1, 2, 3, 4. </li></ul><ul><li>Accordingly, we calculate the present value of the risk free bond at the end of years 1, 2, 3, 4. </li></ul><ul><li>Then we subtract 30 being the recovery value each year. </li></ul><ul><li>We then calculate the present value of the losses using continuously compounded risk free rate. </li></ul>
  23. 23. Solution (Cont…) <ul><li>PV factors </li></ul><ul><li>e -.015 = .9851 </li></ul><ul><li>e -.030 = .9704 </li></ul><ul><li>e -.045 = .9560 </li></ul><ul><li>e -.060 = .9417 </li></ul><ul><li>e -.075 = .9277 </li></ul><ul><li>e -.09 = .9139 </li></ul>
  24. 24. Solution (Cont…) <ul><li>Time of default = 1 </li></ul><ul><li>PV of risk free bond = 2+2e -.015 +2e -.030 +2e -.045 + 2e -.060 +2e -075 + (102)e -.090 </li></ul><ul><li>= 2[1+.9851+.9704+.9560+.9417+.9277]+(102)(.9139) </li></ul><ul><li>= 11.56 + 93.22 = 104.78 </li></ul><ul><li>Time of default = 2 </li></ul><ul><li>PV of risk free bond </li></ul><ul><li>= 2[1+.9851+.9704 +.9560]+(102) (.9417) </li></ul><ul><li>= 7.823 + 96.05 = 103.88 </li></ul>
  25. 25. Solution (Cont…) <ul><li>Time of default = 3 </li></ul><ul><li>PV of risk free bond = [1+ .9851] + (102) (.9704) </li></ul><ul><li>= 3.97 + 98.98 </li></ul><ul><li>= 102.95 </li></ul><ul><li>Time of default = 4 </li></ul><ul><li>PV of risk free bond </li></ul><ul><li>= 102 </li></ul>
  26. 26. Solution (Cont…) <ul><li>So we can equate the expected losses: </li></ul><ul><li>i.e, 7.44 = 272.68Q </li></ul><ul><li>or Q = .0273 = 2.73% </li></ul>Default point (Years) Expected losses PV 1 (104.78 – 30)Q = 74.78Q (74.78)Qe -.03 = 72.57Q 2 (103.88 – 30)Q = 73.78Q (73.88)Qe -.06 = 69.58Q 3 (102.95 – 30)Q = 72.95Q (72.95)Qe -.09 = 66.67Q 4 (104 – 30)Q = 72 Q (72)Qe -.12 = 63.86Q 272.68 Q
  27. 27. Problem <ul><li>A bank has made a loan commitment of $ 2,000,000 to a customer. Of this, $ 1,200,000 is outstanding. There is a 1% default probability and 40% loss given default. In case of default, drawdown is expected to be 75%. What is the expected loss? </li></ul>
  28. 28. Solution <ul><li>Drawdown in case of default = (2,000,000 – 1,200,000) (.75) = 600,000 </li></ul><ul><li>Adjusted exposure = 1,200,000 + 600,000 = 1,800,000 </li></ul><ul><li>Loss given default = (.01) (.4) (1,800,000) = $ 7,200 </li></ul>
  29. 29. Problem <ul><li>A bank makes a $100,000,000 loan at a fixed interest rate of 8.5% per annum. </li></ul><ul><li>The cost of funds for the bank is 6.0%, while the operating cost is $800,000. </li></ul><ul><li>The economic capital needed to support the loan is $8 million which is invested in risk free instruments at 2.8%. </li></ul><ul><li>The expected loss for the loan is 15 basis points per year. </li></ul><ul><li>What is the risk adjusted return on capital? </li></ul>
  30. 30. Solution <ul><li>Net profit = 100,000,000 (.085 - .060 - .0015) – 800,000 + (8,000,000) (.028) </li></ul><ul><li> = 23,50,000 – 800,000 + 224,000 </li></ul><ul><li> = $1,774,000 </li></ul><ul><li>Risk adjusted return on capital = 1.774/8 = .22175 = 22.175% </li></ul>
  31. 31. Problem <ul><li>Using the Merton Model, calculate the value of the firm’s equity. </li></ul><ul><li>The current value of the firm’s equity is $60 million and the value of the zero coupon bond to be redeemed in 3 years is $50 million. </li></ul><ul><li>The annual interest rate is 5% while the volatility of the firm value is 10%. </li></ul>
  32. 32. Solution <ul><li>Formula is: St = V x N(d) – Fe -r(T-t) x N (d-  T-t) </li></ul><ul><li>d = </li></ul><ul><li>V = value of firm </li></ul><ul><li>F = face value of zero coupon debt </li></ul><ul><li> = firm value volatility </li></ul><ul><li>r = interest rate </li></ul>
  33. 33. Solution <ul><li>S = 60 x N (d) – (50)e -(.05)(3) x N (d-(.1)  3) </li></ul><ul><li>d = </li></ul><ul><li>= = 2.005 </li></ul><ul><li>S = 60 N (2.005) – (50) (.8607) N (2.005 - .17321) </li></ul><ul><li>= 60 N (2.005) – (43.035) N (1.8318) </li></ul><ul><li>= (60) (.9775) – (43.035) (.9665) </li></ul><ul><li>= $17.057 million </li></ul>
  34. 34. Problem <ul><li>In the earlier problem, calculate the value of the firm’s debt. </li></ul>
  35. 35. Solution <ul><li>Dt = Fe -r(T-t) – p t </li></ul><ul><li>= 50e -.05(3) – p t </li></ul><ul><li>= 43.035 – p t </li></ul><ul><li>Based on put call parity </li></ul><ul><li>p t = C t + Fe -r(T-t) – V </li></ul><ul><li>Or p t = 17.057 + 43.035 – 60 = .092 </li></ul><ul><li>D t = 43.035 - .092 = $42.943 million </li></ul><ul><li>Alternatively, value of debt </li></ul><ul><li>= Firm value – Equity value = 60 – 17.057 </li></ul><ul><li>= $42.943 million </li></ul>
  36. 36. <ul><li>Consider the following figures for a company. What is the probability of default? </li></ul><ul><ul><li>Book value of all liabilities : $2.4 billion </li></ul></ul><ul><ul><li>Estimated default point, D : $1.9 billion </li></ul></ul><ul><ul><li>Market value of equity : $11.3 billion </li></ul></ul><ul><ul><li>Market value of firm : $13.8 billion </li></ul></ul><ul><ul><li>Volatility of firm value : 20% </li></ul></ul>Problem
  37. 37. <ul><li>Distance to default (in terms of value) = 13.8 – 1.9 = $11.9 billion </li></ul><ul><li>Standard deviation = (.20) (13.8) = $2.76 billion </li></ul><ul><li>Distance to default (in terms of standard deviation) = 4.31 </li></ul><ul><li>We now refer to the default database. </li></ul><ul><li>If 5 out of 100 firms with distance to default = 4.31 actually defaulted, probability of default = .05 </li></ul>Solution
  38. 38. <ul><li>Given the following figures, compute the distance to default: </li></ul><ul><ul><li>Book value of liabilities : $5.95 billion </li></ul></ul><ul><ul><li>Estimated default point : $4.15 billion </li></ul></ul><ul><ul><li>Market value of equity : $ 12.4 billion </li></ul></ul><ul><ul><li>Market value of firm : $18.4 billion </li></ul></ul><ul><ul><li>Volatility of firm value : 24% </li></ul></ul>Problem
  39. 39. <ul><li>Distance to default (in terms of value) = 18.4 – 4.15 = $14.25 billion </li></ul><ul><li>Standard deviation = (.24) (18.4) = $4.416 billion </li></ul><ul><li>Distance to default (in terms of standard deviation) = 3.23 </li></ul>Solution

×