Published on

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide


  1. 1. Self-Separation from the Air and Ground Perspective <ul><li>Margaret-Anne Mackintosh, Melisa Dunbar, Sandra Lozito, Patricia Cashion, Alison McGann, Victoria Dulchinos NASA Ames Research Center </li></ul><ul><li>Rob Ruigrok, Jacco Hoekstra, Ronald Van Gent National Aerospace Laboratory, NLR </li></ul>
  2. 2. Introduction <ul><li>NLR: Free Flight with Airborne Separation Assurance </li></ul><ul><ul><li>Air perspective </li></ul></ul><ul><li>NASA Ames: Air-Ground Integration Study </li></ul><ul><ul><li>Air and Ground perspective </li></ul></ul>
  3. 3. NLR Human-In-The-Loop Study Introduction <ul><li>NLR: Free Flight with Airborne Separation Assurance </li></ul><ul><ul><li>Free Flight Concept Development: </li></ul></ul><ul><ul><ul><li>Traffic & Experiment Manager off-line simulations </li></ul></ul></ul><ul><ul><ul><li>Find a suitable base-line concept </li></ul></ul></ul><ul><ul><li>Free Flight Safety Analysis: </li></ul></ul><ul><ul><ul><li>Traffic Organization and Perturbation AnalyZer (TOPAZ) </li></ul></ul></ul><ul><ul><ul><li>Predict critical non-nominal situations </li></ul></ul></ul><ul><ul><li>Free Flight Human-in-the-Loop Simulation Experiment </li></ul></ul><ul><ul><ul><li>NLR’s Research Flight Simulator </li></ul></ul></ul><ul><ul><ul><li>Human Factors Issues </li></ul></ul></ul><ul><ul><ul><li>Validation of concept with Human-in-the-Loop </li></ul></ul></ul>
  4. 4. NLR Human-In-The-Loop Study Methods <ul><li>Probe the limits </li></ul><ul><ul><li>No Air Traffic Control </li></ul></ul><ul><ul><li>Air crew responsible for traffic separation </li></ul></ul><ul><li>All aircraft in scenario fully equipped </li></ul><ul><ul><li>Automatic Dependent Surveillance - Broadcast (ADS-B) </li></ul></ul><ul><ul><li>Conflict Detection </li></ul></ul><ul><ul><li>Conflict Resolution </li></ul></ul><ul><ul><li>Cockpit Display of Traffic Information (CDTI) </li></ul></ul><ul><li>Cruise flight only </li></ul><ul><ul><li>Direct routing </li></ul></ul><ul><ul><li>Optimal cruise altitude </li></ul></ul>
  5. 5. NLR Human-In-The-Loop Study Scenarios <ul><li>8 crews, 18 runs per crew, 20 minutes per run </li></ul><ul><li>current airline pilots </li></ul><ul><li>2 days including half a day of training </li></ul><ul><li>Traffic Densities: Single, Double, Triple </li></ul><ul><li>Level of Automation: Manual, Execute Combined, Execute Separate </li></ul><ul><li>Non-Nominal: Other aircraft failures/events, Own aircraft failures/events, Delay time increased </li></ul>
  6. 6. NLR Human-In-The-Loop Study Concept <ul><li>Modified Voltage Potential </li></ul><ul><li>Characteristics: </li></ul><ul><ul><li>Fail safe </li></ul></ul><ul><ul><li>Co-operative </li></ul></ul><ul><ul><li>More options </li></ul></ul><ul><ul><li>Clear to pilot </li></ul></ul><ul><ul><li>Communication not required </li></ul></ul>Similar in vertical plane
  7. 7. NLR Human-In-The-Loop Study Flight Crew Interface <ul><li>Navigation Display </li></ul><ul><ul><li>Traffic Symbology </li></ul></ul><ul><ul><li>Conflict Detection </li></ul></ul><ul><ul><li>Resolution Advisories </li></ul></ul><ul><ul><li>Vertical Navigation Display </li></ul></ul><ul><ul><li>Extra EFIS Control Panel functionality </li></ul></ul><ul><li>Modifications to Autopilot </li></ul><ul><ul><li>Execute Combined </li></ul></ul><ul><ul><li>Execute Separate </li></ul></ul><ul><li>Aural alerts </li></ul>
  8. 8. NLR Human-In-The-Loop Study Subjective Results: Acceptability <ul><li>Distribution of responses as a function of the three densities, across all sessions, across all subject pilots </li></ul><ul><li>Acceptability: 91.5% (single), 83.0% (double), 78.7% (triple) </li></ul>
  9. 9. NLR Human-In-The-Loop Study Subjective Results: Safety <ul><li>Distribution of responses as a function of the three densities, across all sessions, across all subject pilots </li></ul><ul><li>Safety: 88.3% (single), 75.5% (double), 71.3% (triple) </li></ul>
  10. 10. NLR Human-In-The-Loop Study Subjective Results: Workload <ul><li>Rating Scale of Mental Effort (RSME) </li></ul><ul><li>Rating less than 40 (“costing some effort”) over all densities </li></ul><ul><li>Results similar to cruise phase results in current ATC scenarios </li></ul>
  11. 11. NLR Human-In-The-Loop Study Objective Results: EPOG <ul><ul><li>Primary Flight Display: 8.1 % </li></ul></ul><ul><ul><li>Lateral Navigation Display: 48.9 % </li></ul></ul><ul><ul><li>Vertical Navigation Display: 7.6 % </li></ul></ul><ul><li>Eye-Point-Of-Gaze measurements </li></ul><ul><li>Pilot Flying and Pilot-Not-Flying </li></ul><ul><li>Percentages of the total fixation duration, averaged over the Pilot Flying and Pilot-Non-Flying, across all sessions: </li></ul>
  12. 12. NLR Human-In-The-Loop Study Objective Results: Maneuvers <ul><li>Distribution of maneuvers as a function of the three different modes, across all sessions, across all subject pilots </li></ul><ul><li>Maneuvers: Heading: 71.0 % Speed: 40.3 % Altitude: 48.7 % </li></ul>
  13. 13. NASA Air-Ground Integration Study Methods <ul><li>Boeing 747-400 simulator and Airspace Operations Lab </li></ul><ul><li>Flight deck and controller perspectives </li></ul><ul><li>8 DIA enroute scenarios (20 minutes in duration) </li></ul><ul><li>10 flight crews/10 controllers </li></ul><ul><li>New display features on flight deck </li></ul><ul><li>Airborne alert logic (no ground conflict probe) </li></ul><ul><li>Controller tools similar to those at DIA </li></ul><ul><li>Controller “monitoring” more than “controlling” </li></ul><ul><li>Run in March/April 1998 </li></ul>
  14. 14. Background/Research Goal <ul><li>Background </li></ul><ul><ul><li>RTCA Free Flight document recommends aircraft self-separation in particular situations (e.g., enroute environment) </li></ul></ul><ul><ul><li>Requires new conceptual airspace that includes human performance parameters </li></ul></ul><ul><ul><li>Aircraft self-separation will require a shift in roles and responsibilities between the users on the ground and in the air </li></ul></ul><ul><li>Research Goal </li></ul><ul><ul><li>To conduct early simulations examining flight deck human performance parameters </li></ul></ul>
  15. 15. NASA Air-Ground Integration Study Scenarios <ul><li>Traffic on flight deck (ADS-B range 120 nms) </li></ul><ul><li>Traffic on controller’s radar display (DIA Sector 9) </li></ul><ul><li>Representation of high v. low density/clutter </li></ul><ul><ul><li>High = 16-17 aircraft, low = 6-8 aircraft </li></ul></ul><ul><li>“ Blocker” aircraft preventing most common resolution </li></ul><ul><li>Conflict event types: high and low density </li></ul><ul><ul><li>Obtuse angle </li></ul></ul><ul><ul><li>Acute angle </li></ul></ul><ul><ul><li>Right angle </li></ul></ul><ul><ul><li>Almost intruder </li></ul></ul>
  16. 16. NASA Air-Ground Integration Study Displays <ul><li>Flight deck display </li></ul><ul><ul><li>No early alert indication (prior to alert zone transgression) </li></ul></ul><ul><ul><li>Alert zone transgression display features </li></ul></ul><ul><ul><li>Temporal predictors and call signs selectable </li></ul></ul><ul><li>Controller Display </li></ul><ul><ul><li>Similar features as those currently in DIA (e.g., vector lines, J rings) </li></ul></ul><ul><ul><li>Some features from CTAS, but no enhanced functions </li></ul></ul>
  17. 17. NASA Air-Ground Integration Study Flight Crew Results <ul><li>Density and detection time </li></ul><ul><ul><li>Flight crews took longer to detect conflicts in high density compared to low density scenarios </li></ul></ul><ul><li>Conflict Angles and detection time </li></ul><ul><ul><li>No differences in detection times between the conflict angles </li></ul></ul><ul><li>Ratings of conflict detection and time pressure </li></ul><ul><ul><li>Significant increase in reported workload and time pressure as a function of traffic density </li></ul></ul><ul><li>No differences for almost intruder for detection times </li></ul>
  18. 18. NASA Air-Ground Integration Study Pilot Detection Times
  19. 19. NASA Air-Ground Integration Study Controller Results <ul><li>Effects of traffic density and conflict angle on detection times </li></ul><ul><ul><li>Interaction between density and angle </li></ul></ul><ul><ul><ul><li>Longer detection time in obtuse angle high density v. obtuse angle low density </li></ul></ul></ul><ul><ul><ul><li>Shorter detection time in acute angle high density v. right angle and obtuse angle high density </li></ul></ul></ul><ul><li>Ratings of workload and task complexity </li></ul><ul><ul><li>Significant increase in ratings of workload and complexity as a function of density </li></ul></ul><ul><ul><li>No differences for almost intruder detection times </li></ul></ul>
  20. 20. NASA Air-Ground Integration Study Controller Detection Times
  21. 21. General Summary <ul><li>Consistent Findings across Studies </li></ul><ul><ul><li>Impact for increasing density </li></ul></ul><ul><ul><ul><li>density may be exacerbated by other factors </li></ul></ul></ul><ul><ul><ul><li>existence of abnormal situations (e.g. weather) may limit self-separation </li></ul></ul></ul><ul><ul><li>Losses of minimum separation </li></ul></ul><ul><ul><ul><li>flight crews try to minimize separation between aircraft while maintaining legal separation </li></ul></ul></ul><ul><ul><ul><li>controllers wanted larger separation than the flight crews maintained (NASA study) </li></ul></ul></ul>
  22. 22. General Summary <ul><li>Unique Findings </li></ul><ul><ul><li>Pilots fixate on CDTI 60% of the time and PFD 10% of the time (NLR study) </li></ul></ul><ul><ul><ul><li>Pilots reported spending too much time on the CDTI (NASA study) </li></ul></ul></ul><ul><ul><li>Performance parameter usage </li></ul></ul><ul><ul><ul><li>Heading was most common parameter used (NLR study) </li></ul></ul></ul><ul><ul><ul><ul><li>similar to previous NASA studies </li></ul></ul></ul></ul><ul><ul><ul><li>Altitude was most common parameter used (NASA study) </li></ul></ul></ul><ul><ul><ul><ul><li>inclusion of the “blocker” aircraft in most common lateral escape path </li></ul></ul></ul></ul>
  23. 23. General Summary <ul><li>Unique Findings (NASA) </li></ul><ul><ul><li>Conflict angles affect controllers and flight crews </li></ul></ul><ul><ul><ul><li>controller conflict detect times </li></ul></ul></ul><ul><ul><ul><li>flight crew timing and type of maneuver </li></ul></ul></ul><ul><ul><li>Density and conflict angle may interact </li></ul></ul><ul><ul><li>Frequent air-to-air communication </li></ul></ul>
  24. 24. Future Research Issues <ul><li>Addition of abnormal situations for workload realism (e.g., weather, winds, SUA, passenger problems) </li></ul><ul><li>Assessment of data link for communications to help frequency congestion </li></ul><ul><li>Simulation including representation of additional carriers and dispatch </li></ul><ul><li>Information requirements assessment for shared situation awareness </li></ul>