Adding value to researchers' data

715 views

Published on

Presentation delivered at launch of TPAC eResearch Cloud

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
715
On SlideShare
0
From Embeds
0
Number of Embeds
22
Actions
Shares
0
Downloads
8
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Adding value to researchers' data

  1. 1. Adding  Value  to   Researchers’  Data   Dr  Andrew  Treloar,  Director  of   Technology   1  CC-­‐BY  @atreloar  
  2. 2. Outline   §  Research  is  changing   §  We  are  all  in  the  data  business   §  ANDS  characterisEcs   §  Adding  value  to  researchers’  data   CC-­‐BY  @atreloar   2  
  3. 3. July  29,  2014   CC-­‐BY-­‐SA,  @hvdsomp  and  @atreloar   3   So  many  research  lifecycles…  
  4. 4. Minimal  Research  Lifecycle   Share Think Do July  29,  2014   CC-­‐BY-­‐SA,  @atreloar   4   01000001 01101110 01100100 01110010 01100101 01110111
  5. 5. CC-­‐BY-­‐NC-­‐SA    hRps://secure.flickr.com/photos/nowpicnic/2182152599/   5  
  6. 6. LHC output from 2009-2013 = 100PB (www.symmetrymagazine.org/article/february-2013/ achievement-unlocked-100-petabytes-of-data) @atreloar
  7. 7. Long-­‐tail  data   CC-­‐BY  @atreloar   7   Size   Number  
  8. 8. Lee  Berger  and  Australopithecus  sediba   8  Lee Berger Google Talk: The Skull in the Rock
  9. 9. CC-­‐BY  @atreloar   9  
  10. 10. What  business  are  we  in?   Theodore  LeviR,  The  Changing  Character  of  Capitalism,   Harvard  Business  Review,  July–August  1956     “The  railroads  did  not  stop  growing  because  the  need  for   passenger  and  freight  transportaEon  declined.  That  grew.   The  railroads  are  in  trouble  today  not  because  that  need  was   filled  by  others  (cars,  trucks,  airplanes,  and  even  telephones)   but  because  it  was  not  filled  by  the  railroads  themselves.   They  let  others  take  customers  away  from  them  because   they  assumed  themselves  to  be  in  the  railroad  business   rather  than  in  the  transporta6on  business.”   CC-­‐BY  @atreloar   10  
  11. 11. Photo CC-BY www.flickr.com/photos/jerryjohn/63351338/ CC-­‐BY  @atreloar   11  
  12. 12. Photo CC-BY www.flickr.com/photos/stiefkind/6454784607/ CC-­‐BY  @atreloar   12  
  13. 13. Photo CC-BY www.flickr.com/photos/torkildr/3462607995/ CC-­‐BY  @atreloar   13  
  14. 14. CC-BY @atreloar 14
  15. 15. Key  differenEators  for  ANDS   §  NaEonally  co-­‐ordinated  approach   §  InsEtuEonally-­‐focussed  engagement   §  “helping  them  meet  their  research  data  ambiEons”   §  Engaging  with  large  naEonally-­‐funded  discipline   investments   §  Bulk  of  funds  spent  outside  ANDS   §  All  disciplines  covered   §  Focus  on  adding  value  to  data  and  re-­‐use   15  ands.org.au  
  16. 16. ANDS  enables  the  transformaEon  of:   Data  that  are:   " Unmanaged   " Disconnected   " Invisible   " Single  use   To  Structured  CollecEons  that  are:   " Managed   " Connected   " Findable   " Reusable   so  that  Australian  researchers  can  easily  publish,   discover,  access  and  use/re-­‐use  research  data.     CC-­‐BY  @atreloar   16  
  17. 17. CC-­‐BY  @atreloar   17  
  18. 18. CC-­‐BY  @atreloar   18  
  19. 19. CC-­‐BY  @atreloar   19  
  20. 20. CC-­‐BY  @atreloar   20  
  21. 21. CC-­‐BY  @atreloar   21  
  22. 22. CC-­‐BY  @atreloar   22  
  23. 23. CC-­‐BY  @atreloar   23  
  24. 24. QuesEons?   §  ands.org.au   §  andrew.treloar@ands.org.au   §  @atreloar   24  CC-­‐BY  @atreloar  
  25. 25. ANDS  online  services   §  Research  Data  Australia   §  Cite  my  Data  DOI  IdenEfier  service   §  Vocab  creaEon/management  service  +  API   §  Research  AcEvity  idenEfier  service  +  API   §  Developer  toolbox   ands.org.au   25  
  26. 26. Value  of  data  is  increased  because   §  It  is  beRer  managed   §  It  is  more  findable   §  It  is  citeable   §  It  is  (potenEally)  more  re-­‐usable   §  InternaEonal  data  environments  are  more   compaEble  with  those  in  Australia   CC-­‐BY  @atreloar   26  
  27. 27. Major  programs  undertaken  (200+  projects)   §  Seeding  the  Commons  (fixing  the  past)   §  Data  Capture  (fixing  the  future)   §  Metadata  Stores  (managing  insEtuEonal  research   data  assets)   §  ApplicaEons  (demonstraEng  value  of  joining  data)   §  Major  Open  Data  CollecEons  (content  focus)   §  eResearch  Infrastructure  ConnecEvity  (connecEon   focus)   CC-­‐BY  @atreloar   27  

×