SlideShare a Scribd company logo
1 of 70
5316 Environmental Hydrology
5316 Environmental Hydrology
                               ENVIRONMENTAL HYDROLOGY

                                      Presentation
5316 Environmental Hydrology                              Introduction

                               Definition:

                                                In hydrology
                                 precipitation is any form of
                                 water like rain, snow, hail
                                 and   sleet   derived   from
                                 atmospheric vapor, falling to
                                the ground.
                                OR
                                                What ever water reaches to earth from the atmosphere
                                is called precipitation.
5316 Environmental Hydrology                             Introduction


                               Precipitation is one of the most important events of hydrology.

                               Floods and droughts are directly related to the occurrence of

                               precipitation. Water resources management, water supply schemes,

                               irrigation, hydrologic data for design of hydraulic structures and

                               environmental effects of water resources development projects are

                               related to precipitation in one way or the other. So it is important to

                               study various aspects of precipitation.
5316 Environmental Hydrology                     Formation of Precipitation

                                  • Precipitation is the basic input to the hydrology.
                               • Factors determining precipitation
                                 or the amount of atmospheric
                                 moisture over a region
                                 a. Climate
                                 b. Geography
                               • Ocean surfaces is the chief
                                 source      of    moisture for
                                 precipitation
5316 Environmental Hydrology        Forms Of Precipitation




                               Precipitation
5316 Environmental Hydrology   Forms of precipitation
5316 Environmental Hydrology                        Forms of precipitation

                                Drizzle:
                                • Drizzle are the minute particles of water at start of rain.

                                • Drizzle has diameter under 0.02 inch.

                                • Intensity is usually less than 0.4 inch / hour.

                                • Its speed is quite slow and they are normally evaporated rather
                                  than flowing on the surface.
5316 Environmental Hydrology                        Forms of precipitation

                                Rain:
                               • Rain is the most common type of precipitation.
                               • The size of drops is more than 0.02 inch and less than 0.25 inch
                                 in diameter.
                               • Flow is generally produced on the ground by it if the rate of
                                 rainfall is more than the rate of infiltration of soil.
                                Glaze:
                               • It is the ice coating formed on the drizzle or rain drops as it
                                 comes in contact with the cold surfaces on the ground.
                                Sleet:
                               • It is the frozen rain drops cooled to the ice stage while falling
                                 through air at subfreezing temperatures
5316 Environmental Hydrology                          Forms of precipitation

                                Snow:
                               • Snow is the precipitation in the form of ice crystals resulting from
                                 sublimation i.e. from water vapor to ice directly
                               • Often the warm surface of earth melts the freshly fallen snow.
                               • However, if the Earth’s surface is cold, the snow can accumulate on
                                 the ground
                                Snowflake:
                               • It is made up of a number of ice crystals fused together
                                Hails:
                               • Precipitation in the form of balls or lumps of ice over 0.2 inch
                                 diameter
                               • Formed by alternate freezing and thawing as the particles are carried
                                 up and down in highly turbulent air currents
                               • Their impact is also more as compared to other forms of precipitation.
5316 Environmental Hydrology   Forms of precipitation
5316 Environmental Hydrology               Production of Precipitation


                               Precipitation is formed from water vapor in the
                               atmosphere.
                               Factors influencing precipitation formation.
                               i. Mechanism of cooling

                               ii. Condensation of water vapors

                               iii.Growth of droplets

                               iv.Accumulation of moisture
5316 Environmental Hydrology                       Production of Precipitation

                                Mechanism of Cooling:
                               • There reduction in pressure when air ascends from the surface of
                                 earth to upper levels in the atmosphere is the only mechanism
                                 capable of producing the degree and rate needed to account for
                                 heavy rainfall.
                               • The capacity of a given volume of air to hold a certain amount of
                                 water vapors is lowered due to cooling.
                               • Super saturation is known to occur in the atmosphere so the excess
                                 moisture over saturation condenses through the cooling process
                                 which ultimately results in precipitation.
5316 Environmental Hydrology                    Production of Precipitation

                                Condensation of Water Vapors:
                               • It normally occurs when there is 100% relative humidity and a
                                 condensation nuclei having an affinity for water is present.
                               • Sources of these condensation nuclei are the particles of sea salt,
                                 carbon dioxide and the sulfurous and nitrogenous oxides emanating
                                 from surface of the earth into the atmosphere.
                               • There appears to be always sufficient nuclei present in the
                                 atmosphere.
                               • Condensation will always occur in air the lower atmosphere is
                                 cooled to saturation, often before the saturation point is reached.
5316 Environmental Hydrology                          Production of Precipitation

                                     Growth of Droplets:
                                       It is required so that the liquid particles present in the clouds can
                                       reach the ground
                                       There are two process regard as most effective for droplet growth.

                               i.      Coalescence of droplets through collision.

                               ii.     Co-existence of ice crystals and water droplets.
                                    i. Coalescence of droplets through collision:
                                     • Coalescence of droplets through collision due to difference in speed
                                       of motion between larger and smaller droplets results in the growth
                                       of the droplets.
                                     • The growth of the droplets increases their weight as a result of
5316 Environmental Hydrology                   Production of Precipitation

                                 which their rate of fall is also increased whereby more collision
                                 with other droplets and more growth of droplets takes place.

                               ii.Co-existence of ice crystals and water droplets.
                               • The growth of droplets is also achieved by their co existence with
                                 the ice crystals.
                               • This generally happens in a temperature range of 10oF to 20oF
                               • Bergeron’s theory.
                                 When ice crystals and water droplets co exist in a cloud, an
                                 imbalance is caused due to lower saturation vapor pressure over ice
                                 as compared to water this results in the evaporation of water
                                 droplets and condensation of much of these droplets on ice crystals
                                 also causing their growth and ultimate fall through clouds.
5316 Environmental Hydrology                     Production of Precipitation

                               • Accumulation of moisture:
                               • Heavy rainfall amount over a river basin exceed by far the amount of
                                 water vapor at the atmospheric volume vertically above the basin at
                                 the beginning of the rainfall.
                               • Convergence:
                                 The net horizontal influx of air per unit area is called convergence.
                               • Clearly there must be a large net horizontal inflow of water vapor
                                 into the atmosphere above the basin area.
                               • The moisture added to the atmosphere over a basin may be
                                 transported very large distance in the lowest layer of the atmosphere.
                                 When this moist current reaches a region of active. Vertical motion it
                                 rises thousands of feet and loses much of its contained water vapor in
                                 just a few hours.
5316 Environmental Hydrology   Production of Precipitation
5316 Environmental Hydrology                         Causes of precipitation

                               Causes of precipitation is classified into following types based upon the
                               lifting mechanism.                          Cycloni
                                                                           c

                               i.    Convectional
                                     precipitation
                               ii.   Orographic Precipitation
                               iii. Cyclonic Precipitation
                                Convectional
                                     precipitation:-
                               •     Earth becomes heated due to
                                     solar energy.
                               •     Air when comes to contact
                                     with heated earth becomes
5316 Environmental Hydrology                        Causes of precipitation

                               • Its Creates atmospheric instability and the laps rate increase near the
                                 earth surface increase rapidly.
                               • Lighter air rises by convection , potentially causing convective
                                 precipitation.
                               • In convectional precipitation the main element is thermal convection
                                 of the moisture laden air.
                               • Source of heat is only the solar radiation and it heats the major
                                 portion of the earth.
                               • Air when comes into a low pressure atmospheric system also creats
                                 convection precipitation.
5316 Environmental Hydrology                         Causes of precipitation

                                Orographic Precipitation:-
                               •   Moisture laden air masses are lifted by contact with Orographic
                                   barriers and it occurs expansion and condensation.
                               •   Orographic precipitation is most pronounced on the windward side
                                   of mountain range, generally heaviest precipitation occurs where
                                   favorable Orographic effects are present.
                               •   Heaviest precipitation due to south easterlies in the subcontinent
                                   occurs along the Southern slopes of Himalaya and its other ranges.
                               •   Monsoon rainfall (June to October) decreases gradually as the
                                   distance from the line of heaviest rainfall increases.
5316 Environmental Hydrology                        Causes of precipitation

                                Cyclonic Precipitation:-
                               •   Precipitation in plain regions is generally cyclonic in character and
                                   depending upon whether they occur within or beyond the tropics it
                                   is divided into further two types.
                               •   Tropical
                               •   Extra tropical
                               •   Precipitation in the Indo-Pak subcontinent are of tropical variety.
                               •   In ward maritime air-mass of low latitude in high temperature
                                   tropical cyclones are violent storms formed. These are known as
                                   typhoons or cyclones.
5316 Environmental Hydrology                         Causes of precipitation

                               •   In the center of the cyclonic storm there is small low pressure air.
                                   The isobars around such a low pressure are very nearly circular in
                                   shape and generally greater than the extra tropical cyclones.
                               •   Tropical cyclones have a average diameter of over 300 to 400 miles
                                   and the wind speed around cyclones may be as high as 60 to 90
                                   miles per hour.
                               •   In September, October and November these storms are very
                                   destructive in Bangladesh and cause considerable loss of life and
                                   property over the coastal districts.
5316 Environmental Hydrology   Distribution of precipitation over different types of surfaces
5316 Environmental Hydrology                   Precipitation data and its analysis

                               •   Precipitation Data
                               •   Precipitation data are necessary for most land use plans and for
                                   hydrologic planning like water for human, agriculture, disposal of
                                   waste water and the control of excess rainfall .
                               •   In agriculture precipitation data can be indicate when and where a
                                   lack or a surplus of water for crops may be expected.
                               •   State and federal government have collected and published
                                   precipitation data and it is available in some libraries, in electronic
                                   tapes or CD’s and now it is also available on the Web.
                               •   Special reports are published on special occasions like flood events
                                   of major importance, rainfall rate duration frequency or droughts.
5316 Environmental Hydrology                  Precipitation data and its analysis

                               •   Analysis of precipitation data
                               •   Point Data Analysis
                               •   Point precipitation data refers to precipitation of a station, data
                                   could be in form of hourly record, daily record, monthly
                                   precipitation or annual precipitation.
                               •   Depending upon the nature of catchment and its area, there could be
                                   as many gauging stations as feasible. Before using records from a
                                   rain gauge check its continuity and consistency.
                               •   Record may not be continuous and consistent due to many reasons
                               •   Now we will discuss the checking consistency of data and hence its
                                   adjustment accordingly.
5316 Environmental Hydrology                  Precipitation data and its analysis

                                Estimation Of Missing Precipitation Record
                               • The precipitation record should be complete but due to absences of
                                   the observer or because of instrumental failures Some precipitation
                                   stations may have short breaks in the records.
                               •    U.S. Weather Bureau, estimates the missing precipitation of a
                                   station from the observations of precipitation at some other stations
                                   as close to and as evenly spaced around the station with the missing
                                   record as possible.
                               • The station whose data is missing is called interpolation station and
                                   gauging stations whose data are used to calculate the missing
                                   station data are called index stations.
                                   There are two methods for estimation of missing data.
                               i. Arithmetic mean method
                               ii. Normal ratio method
5316 Environmental Hydrology                  Precipitation data and its analysis

                               •   If the normal annual precipitation of the index stations lies within
                                   ± 10% of normal annual precipitation of interpolation station then
                                   arithmetic mean method applies otherwise the normal ratio method
                                   is used for this purpose .
                                   Consider that record is missing from station “X”

                                   Now let
                                   N= Normal annual precipitation.
                                   (Mean of 30 years of annual precipitation data)
                                   P = Storm Precipitation.
                                   Let Px is the missing precipitation for station “X” and Nx is normal
                                   annual precipitation of station this station, N a, Nb & Nc are normal
                                   annual precipitations of near by three stations, A, B and C
                                   respectively and Pa, Pb, Pc are the storm precipitation of that
5316 Environmental Hydrology                    Precipitation data and its analysis

                                 Now we have to compare Nx with Na , Nb and Nc separately. If
                                 difference of Nx – Na, Nx - Nb, Nx – Nc is with in 1/10% of Nx then
                                 we use, simple arithmetic mean method otherwise the normal ratio
                                 method
                                Simple Arithmetic Mean Method
                                 According to the arithmetic mean method the missing precipitation is
                                 given as
                                       1 i= n
                                 Px = ∑ Pi          where n is number of nearby stations.
                                      n   i=1


                                  In case of three stations 1, 2 and 3     Px = (P1 + P2 + P3)/3 and
                                         naming stations as A, B and C instead of 1, 2 and 3
                                  Px =        (Pa + Pb + Pc)/3
5316 Environmental Hydrology                       Precipitation data and its analysis

                                Normal Ratio Method

                                 According to the arithmetic mean method the missing precipitation
                                         1 i=n N x
                                 is         ∑       Pi
                                         n i =1 N i

                                 Px =


                                      where Px is the missing precipitation for any jth period at the
                                 interpolation station “X”. Pi is the precipitation. for the same period
                                 at the “ith” station of a group of index stations and “Nx” and Ni are
                                        1 i=n N x
                                 the       ∑
                                       normal annual
                                                   Pi    precipitation values for the X and ith stations e.g.
                                        n i =1 N i

                                 Px =
5316 Environmental Hydrology                  Consistency of Precipitation Data

                               • Using precipitation in the solution of hydrologic problems, it is
                                 necessary to ascertain that time trends in the data are due to
                                 meteorological changes.
                               • Quite frequently these trends are the result of the changes in the
                                 gauge location are not disclosed in the published record, changes in
                                 the intermediate surroundings such as construction of buildings or
                                 growth of trees, etc. and changes in the observation techniques.
                               • The consistency of the record then is required to be determined and
                                 the necessary adjustments be made. This can be achieved by the
                                 method called the double mass curve technique.
                               • The double mass curve is obtained by plotting the accumulated
                                 precipitation at the station in question along X-axis and the average
                                 accumulated precipitation of a number of other nearby stations which
                                 are situated under the same meteorological conditions along Y-axis.
5316 Environmental Hydrology                Consistency of Precipitation Data

                               If the curve has a constant slope, the record of station “X” is
                               consistent. However, if there is any break in the slope of the curve,
                               the record of the station is inconsistent and has to be adjusted by the
                               formula

                               Pa = (Sa / So) x Po

                                     Where
                               Pa   = Adjusted precipitation.
                               Po   = Observed Precipitation .
                               Sa   =Slope prior to the break in the curve
                               So   =Slope after the break in the curve.
5316 Environmental Hydrology                           Precipitation Events

                               • A storm is described by several key parameters and total amount of
                                 precipitation or depth, usually in inches and millimeters or
                                 centimeters.

                               • Duration:-
                               • The time from the beginning of the storm until the end of the storm is
                                 called duration.
                               • The average rate of precipitation or intensity, is found by dividing the
                                 amount of precipitation during a given period by the length of that
                                 period and it is measured in inches, millimeter or centimeter per
5316 Environmental Hydrology                             Precipitation Events

                                 Precipitation events can be divided into three types

                               i. Geographical And Seasonal Variation

                               ii. Historic Time Trends

                               iii.Storm Area Patterns
                                Geographical And Seasonal Variation
                                 Annual precipitation is different in the different countries
                                 For Example:
                                 In contiguous U.S average annual precipitation is 30 in.(75cm) but
                                 there is great spatial variation amounts and seasonality across the
                                 country due to availability of moisture , temporal variance ,
                                 difference of precipitation mechanism.
5316 Environmental Hydrology
                               U.S. Annual Precipitation
5316 Environmental Hydrology                         Precipitation Events

                               In the figure mountains of
                               extreme      pacifc   northwest,
                               mean annual mountains of the
                               extreme pacific mean annual
                               precipitation is upto 140 in. is
                               moving wet and cool          air
                               masses, midlatitude cyclones,
                               and orographic lifting over
                               mountains.
5316 Environmental Hydrology                          Precipitation Events

                                Historic Times Trends:-
                                 Climate tends to fluctuate in cycles even now there is concern about
                                 long term global warming with unknown regional effects on
                                 precipitation. Over's the past few the past few hundred years
                                 precipitation has tended fluctuate in cycles of about 3, 7, 15 to 20 and
                                 100 or so years.
                                Storm Area Patterns:-
                                 Rainfall amounts, duration, and intensities vary spatially within the
                                 area covered by a given storm. Large area storms such as large frontal
                                 system, tend to be more uniform in distribution and have longer
                                 durations.
5316 Environmental Hydrology                  Measurement of Precipitation

                                Amount of Precipitation:-
                                 The amount of precipitation means the vertical depth of water that
                                 would accumulate on a level surface, if the precipitation remains
                                 where it falls. The amount of precipitation is measured in length units
                                 (inches, ft., cm, etc.).
                                Intensity of precipitation:-
                                 Amount of precipitation per unit time is called the intensity of
                                 precipitation.
                                 Both the amount and rate or intensity of precipitation are important in
                                 hydrologic studies.
                                 The precipitation is measured by rain gauges.
                                Types of rain gauges:-
                               i. Non-recording rain gauge. (Standard rain gauge)
                               ii. Recording rain gauge
5316 Environmental Hydrology                    Measurement of Precipitation

                                Non-recording rain gauge
                               • In non recording or standard rain gauges observer has
                                 to take readings and he has to record the time also for
                                 calculation of intensity of rain fall.
                               • The standard gauge of U.S. Weather Bureau has a
                                 collector of 8 inch diameter.
                               • Rain passes from a collector into a cylindrical
                                 measuring tube inside the overflow can.
                               • Its cross sectional area is 1/10th of the collector, so that 0.1 inch rain
                                 fall will fill the tube to 1 inch depth.
                               • A measuring stick is inside it, which measures up to 0.001 inch.
                               • When snow is expected the collector and tube are removed. The
                                 snow collected in the outer container or over flow can is melted,
                                 poured into the measuring tube and then measured.
5316 Environmental Hydrology                   Measurement of Precipitation

                                Recording rain gauge

                                 Recording rain gauges gives the rain recorded automatically with
                                 respect to time, so intensity of rain fall is also known. Now these rain
                                 gauges are also used it is of several types

                                 Types of recording rain gauges.

                               i. Float type

                               ii. Weighing type

                               iii.Tipping bucket type
5316 Environmental Hydrology                   Measurement of Precipitation

                                Float type
                               •   This type of rain gauge has a receiver and a float chamber along
                                   with some recording arrangement.
                               •    In this type the rain is led into a float chamber containing a light.
                               •   The vertical movement of the float as the level of water rises is
                                   recorded on a chart with the help of a pen connected to float. T
                               •   he chart is wrapped around a rotating clock driven drum.
                               •   To provide a continuous record for 24 hours some automatic means
                                   are provided for emptying the float chamber quickly when it
                                   becomes full, the pen then returning to the bottom of the chart.
                               •   Siphoning arrangement activates when the gauge records a certain
                                   fixed amount of rain (mostly o.4 inches of rainfall.). Snow can not
                                   be measured by this type of rain gauge.
5316 Environmental Hydrology                  Measurement of Precipitation


                                Weighing type
                               •   The weighing type rain gauge consists of a receiver, a bucket, a
                                   spring balance and some recording arrangement.
                               •   The weighing type gauge weighs the rain or snow which falls into a
                                   bucket which is set on a lever balance.
                               •   The weight of the bucket and content is recorded on a chart by a
                                   clock driven drum.
                               •   The record is in form of a graph one axis of which is in depth units
                                   and the other has time.
                               •   The records show the accumulation of precipitation. Weighing type
                                   gauges operate from 1 to 2 months with out stop. But normally one
                                   chart is enough only for 24 hours. The receiver is removed when
                                   snow is expected. Snow can be measured by this type of rain gauge.
5316 Environmental Hydrology                   Measurement of Precipitation

                                Tipping bucket type
                               •   This type of gauge used at some weather bureau first order stations
                                   is equipped with a remote recorder located inside the office which is
                                   away from the actual site.
                               •   The gauge has two compartments pivoted in such a way that one
                                   compartment receives rain at one time.
                               •   This type of gauge is not suitable for measuring snow without
                                   heating the collector. Plotting is similar to that of other recording
                                   rain gauges.




                                                                                  TIPPING BUCKET TYPE RAIN GUAGE
5316 Environmental Hydrology                Average Precipitation over an Area

                               • Conversion of point precipitation of various gauging stations into
                                   average precipitation of that area a great experience and skill is
                                   required.
                               • There are three methods to find average precipitation over a basin.
                               • Accuracy of estimated average precipitation will depend upon the
                                   choice of an appropriate method.
                               • Methods to determine average precipitation.
                               i. Arithmetic Mean Method
                               ii. Thiessen Polygon Method
                               iii.Isohyetal method
5316 Environmental Hydrology                 Average Precipitation over an Area

                                Arithmetic Mean Method
                               •    In this method the precipitation over area is the arithmetic average
                                   of the gauge precipitation values.
                               •   Data is taken from only those stations which are within the
                                   boundary.
                               •   This is the simplest method but only be applicable when
                               •   Basin area is flat
                               •   All stations with in practical limits are uniformly distributed over
                                   the area.
                               •   The rainfall is also nearly uniformly distributed over the area.
                                                        1 n        Where          I = Station
                                        P (average) =   ∑ P i                     Pi = Precipitation
                                                        n  i=1
                                                                                    N = Number of gauges
5316 Environmental Hydrology                  Average Precipitation over an Area

                                Thiessen Polygon Method:-
                                   The following steps are used in Thiessen Polygon Method.
                               •   Draw the given area according to a certain scale and locate the
                                   stations where measuring devices are installed.
                               •   Join all the stations to get a network of non-intersecting system of
                                   triangles.
                               •   Draw perpendicular bisectors of all the lines joining the stations and
                                   get a suitable network of polygons, each enclosing one station. It is
                                   assumed that precipitation over the area enclosed by the polygon is
                                   uniform.
                               •   Measure area of the each polygon.
                               •   Formula for the Average precipitation of the whole basin.
                                   P (average) = (P1 A1 + P2 A2 + ...+ Pn An)/A
5316 Environmental Hydrology                   Average Precipitation over an Area

                                   Where
                               • P1 = Precipitation at station
                                 enclosed by polygon of area A1
                               • P2 Precipitation. at station
                                 enclosed by polygon of area A2
                                   and so on
                               •    Pn = Precipitation at station
                                   enclosed by polygon of area An
                               • A represents the total area of
                                 the catchment.
5316 Environmental Hydrology                Average Precipitation over an Area

                                Isohyetal method:-
                               • Draw the map of the area according to a certain scale.

                               • Locate the points on map where precipitation measuring
                                 instruments are installed.
                               • Write the amount of precipitation for stations.

                               • Draw isohyets (Lines joining points of equal precipitation).

                               • Measure area enclosed by every two isohyets or the area enclosed
                                 by an isohyet and boundary of the catchment.
                               • Average precipitation formula
5316 Environmental Hydrology                Average Precipitation over an Area

                               P(average) = (P1 A1 + P2 A2 + ...........+ Pn An)/A
                               Where
                               P1= Average precipitation of two isohyets 1 and 2
                               A1= Area between these two isohyets.
                               P2 = Average precipitation of two isohyets 2 and 3
                               A2 = the area b/w these two isohyets.
                               And so on
                               Pn = Average precipitation of isohyets n-1 and n
                               An = the area b/w these two isohyets.
                               Note:
                                  The last and first areas mentioned Should be between an isohyet
                                  and boundary of the catchment.
5316 Environmental Hydrology              Average Precipitation over an Area

                                Rainfall Frequency Distribution:-
                                 Hydrologist need to estimate the probality that a given rainfall
                                 event will occur to assistant planners in determining the
                                 likelihood of the success or failure of a given project
                                Parameters
                               i. Duration
                               ii. Intensity
                               iii.Return period
                                     i. Duration
                                   The time from the beginning of the storm to the end is called
                                   duration.
                                     ii. Intensity
                                   Amount of precipitation per unit time is called the intensity of
                                   precipitation.
5316 Environmental Hydrology           Average Precipitation over an Area

                               iii. Return period:-
                               The return period is the average period of he time in years
                               expected either between high intensity storm or between very dry
                               periods.
5316 Environmental Hydrology
                               Biomes and Rainfall
Figure from weather web for frontal rainfall
5316 Environmental Hydrology
5316 Environmental Hydrology                      Precipitation and Flow


                                Types Of Flow
                               i. Ground Water Flow
                               ii. Shallow Subsurface
                                  Flow
                               iii. Horton Overland
                                  Flow
5316 Environmental Hydrology   Stream Reaches
5316 Environmental Hydrology   Infiltration and Runoff
5316 Environmental Hydrology   Overland flow and depression storage
5316 Environmental Hydrology




                               Water movement in
                               wet and dry grains
5316 Environmental Hydrology                            Groundwater Zones

                                Vertical Zones Of Subsurface Water:-
                               There are three vertical zones of subsurface water.
                               i. Soil water Zone:-
                               ii. Vadose Zone:-
                               iii. Capillary Zone:-
                                Soil water Zone:-
                               •   Extends from the ground surface down through the major root
                                   zone.
                               •   Its thickness is usually a few but varies with soil type and
                                   vegetation.
5316 Environmental Hydrology                           Groundwater Zones


                                Vadose Zone:-
                               •   Vadose zone is also called unsaturated zone.
                               •   Extends from the surface to the water table through the root zone ,
                                   intermediate zone and capillary zone.
                                Capillary Zone:-
                               •   Capillary zone extends from the water table up to the limit of
                                   capillary rise.
                               •   It varies Inversely to the pore size of the soil and directly with the
                                   Surface tension.
5316 Environmental Hydrology   Groundwater terminologies
5316 Environmental Hydrology                     Groundwater Terminologies

                                Water Table:-
                                  The level to which water will rise in a well drilled into the saturated
                                  zone.
                                Saturated Zone:-
                                  Occurs beneath the water table where porosity is direct measures of
                                  the water contained per unit volume.
                                Porosity:-
                                  Porosity average about 25% to 35% for most aquifer system.
                                  Expressed as the ratio of the volume of voids to the total volume.
5316 Environmental Hydrology                     Groundwater Terminologies

                                Unconfined aquifer:-
                                  An aquifer where the water table exists under atmospheric as
                                  defined by levels in shallow wells.
                                Confined Aquifer:-
                                  An aquifer that is overlain by a relatively impermeable unit such
                                  that the aquifer is under pressure and the water level rises above the
                                  confined unit.
                                Potentiometric Surface:-
                                  In a confined aquifer, the hydrostatic pressure level of water in the
                                  aquifer, defined by the water level that occurs in a lined penetrating
                                  well
5316 Environmental Hydrology                    Groundwater Terminologies

                                Leaky confined aquifer:-
                                  represents a stratum that allows water to flow from above through a
                                  leaky confining zone into the underlying aquifer.
                                Perched aquifer:-
                                  Occurs when an unconfined water zone sits on top of a clay lens,
                                  separated from the main aquifer below.
5316 Environmental Hydrology                         Hydrologic Equation



                               • The hydrologic equation is a statement among components of
                                 Hydrologic Cycle.
                               • It states that “Rate of Inflow minus the Rate of Outflow is equal to
                                 the Rate of change of storage”
                                                     I-O = Δs/Δt
                                 where I = Rate of Inflow,
                                      O = Rate of Outflow,
                                 Δs/Δt = Rate of Change of Storage
5316 Environmental Hydrology                         Hydrologic Equation

                                Components of Inflow:
                                 • Precipitation
                                 • Import of water by channeling it into any given area
                                 • Groundwater Inflow from an adjoining area

                                Components of Outflow:
                                 •   Surface runoff outflow
                                 •   Water channeled out of an area for Irrigation etc.
                                 •   Evaporation
                                 •   Transpiration
                                 •   Interception
5316 Environmental Hydrology                      Hydrologic Equation


                                Change in Storage:
                                   This occurs as change in
                                 • Groundwater
                                 • Surface Reservoir water and Depression storage
                                 • Detention storage
5316 Environmental Hydrology                   Water Budget in a Catchment


                               • Calculations regarding the incoming, outgoing and changes in water
                                 quantities inside a catchment show its water budget.
                               • This can be done by applying the Hydrologic equation to a
                                 catchment area.
                               • Inflow can be the precipitation “P” on the ground surface

                               • Outflow consists of Interception Losses “Li”, Surface Runoff “R”
                                 and Evaporation “E”
                               • The storages are Infiltration “F” and Depression Storage “D”
5316 Environmental Hydrology                   Water Budget in a Catchment

                               • The Hydrologic equation can thus be expressed as
                                               P – (Li +R + E) = D + F
                               or      R = P – (Li+ E + D + F)
                               or      R=P–L
                                  where “L” represents all losses
                               • If all quantities on the right hand side can be measured, the surface
                                  runoff of a given catchment in response to known precipitation can
                                  easily be measured.
                               • Very difficult to measure the exact quantities so relationships are
                                  developed and on the basis of these relationships, different
                                  quantities are estimated.
5316 Environmental Hydrology




       Thanks

More Related Content

What's hot

What's hot (20)

Ct 301 hydrology 5th
Ct 301 hydrology 5thCt 301 hydrology 5th
Ct 301 hydrology 5th
 
Hydrological cycle and its components
Hydrological cycle and its componentsHydrological cycle and its components
Hydrological cycle and its components
 
FROMS & TYPES OF PRECIPITATION
FROMS & TYPES OF PRECIPITATIONFROMS & TYPES OF PRECIPITATION
FROMS & TYPES OF PRECIPITATION
 
Hydrological cycle
Hydrological cycleHydrological cycle
Hydrological cycle
 
The Hydrologic Cycle
The Hydrologic CycleThe Hydrologic Cycle
The Hydrologic Cycle
 
Water Balance Analysis
Water Balance AnalysisWater Balance Analysis
Water Balance Analysis
 
Global circulation patterns of atmosphere
Global circulation patterns of atmosphereGlobal circulation patterns of atmosphere
Global circulation patterns of atmosphere
 
Hydrologic cycle
Hydrologic cycleHydrologic cycle
Hydrologic cycle
 
Rainfall ppt
Rainfall pptRainfall ppt
Rainfall ppt
 
Measurement of precipitation (rainfall )
Measurement of precipitation (rainfall )Measurement of precipitation (rainfall )
Measurement of precipitation (rainfall )
 
Hydrology presentation
Hydrology presentationHydrology presentation
Hydrology presentation
 
Atmospheric circulation
Atmospheric circulationAtmospheric circulation
Atmospheric circulation
 
Precipitation
PrecipitationPrecipitation
Precipitation
 
WATER IN ATMOSPHERE
WATER IN ATMOSPHEREWATER IN ATMOSPHERE
WATER IN ATMOSPHERE
 
Runoff
RunoffRunoff
Runoff
 
Climatology scope and principles
Climatology scope and principlesClimatology scope and principles
Climatology scope and principles
 
Drought, its Effects & Suggestions to Prevent it.
Drought, its Effects & Suggestions to Prevent it.Drought, its Effects & Suggestions to Prevent it.
Drought, its Effects & Suggestions to Prevent it.
 
Measurement of evaporation
Measurement of evaporationMeasurement of evaporation
Measurement of evaporation
 
Precipitation types and clouds types
Precipitation types and clouds types Precipitation types and clouds types
Precipitation types and clouds types
 
Rain gauges
Rain gaugesRain gauges
Rain gauges
 

Viewers also liked

Viewers also liked (9)

Solubility (Physical Pharmacy)
Solubility (Physical Pharmacy)Solubility (Physical Pharmacy)
Solubility (Physical Pharmacy)
 
Precipitation Titration _ Pharmaceutical Analysis _ B. Pharmacy _ Amit Z C...
Precipitation Titration  _  Pharmaceutical Analysis  _ B. Pharmacy _ Amit Z C...Precipitation Titration  _  Pharmaceutical Analysis  _ B. Pharmacy _ Amit Z C...
Precipitation Titration _ Pharmaceutical Analysis _ B. Pharmacy _ Amit Z C...
 
Precipitation
PrecipitationPrecipitation
Precipitation
 
Gravimetry
GravimetryGravimetry
Gravimetry
 
Gravimetry
GravimetryGravimetry
Gravimetry
 
Non Aqueous Titration
Non Aqueous TitrationNon Aqueous Titration
Non Aqueous Titration
 
Gravimetric analysis
Gravimetric analysisGravimetric analysis
Gravimetric analysis
 
Gravimetry
GravimetryGravimetry
Gravimetry
 
Non aqueous titration
Non aqueous titrationNon aqueous titration
Non aqueous titration
 

Similar to Precipitation

The hydrological cycle
The hydrological cycleThe hydrological cycle
The hydrological cycleMaizie's Tail
 
Precipitation and its classification
Precipitation and its classificationPrecipitation and its classification
Precipitation and its classificationgowthamgowtham142
 
Wrm hydrology by k r thanki
Wrm hydrology by k r thanki Wrm hydrology by k r thanki
Wrm hydrology by k r thanki Krunal Thanki
 
HYDROLOGICAL CYCLE.pptx
HYDROLOGICAL CYCLE.pptxHYDROLOGICAL CYCLE.pptx
HYDROLOGICAL CYCLE.pptxKwekuDosty
 
Composition of the atmosphere.pptx
Composition of the atmosphere.pptxComposition of the atmosphere.pptx
Composition of the atmosphere.pptxPhilip67
 
PRECIPITATION-1 (1).pptx
PRECIPITATION-1 (1).pptxPRECIPITATION-1 (1).pptx
PRECIPITATION-1 (1).pptxJorenWagayan
 
Prelim-Presentation-Module-1.pptx
Prelim-Presentation-Module-1.pptxPrelim-Presentation-Module-1.pptx
Prelim-Presentation-Module-1.pptxKYLAMARIECARACAS
 
Precipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptx
Precipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptxPrecipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptx
Precipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptxCheDillon1
 

Similar to Precipitation (20)

Hydrological cycle
Hydrological cycleHydrological cycle
Hydrological cycle
 
Slide share
Slide shareSlide share
Slide share
 
The hydrological cycle
The hydrological cycleThe hydrological cycle
The hydrological cycle
 
Condensation
CondensationCondensation
Condensation
 
HYDROLOGY.pptx
HYDROLOGY.pptxHYDROLOGY.pptx
HYDROLOGY.pptx
 
Water cycle.pdf
Water cycle.pdfWater cycle.pdf
Water cycle.pdf
 
Precipitation and its classification
Precipitation and its classificationPrecipitation and its classification
Precipitation and its classification
 
Unit 1 Precipitations.pptx
Unit 1 Precipitations.pptxUnit 1 Precipitations.pptx
Unit 1 Precipitations.pptx
 
Wrm hydrology by k r thanki
Wrm hydrology by k r thanki Wrm hydrology by k r thanki
Wrm hydrology by k r thanki
 
HYDROLOGICAL CYCLE.pptx
HYDROLOGICAL CYCLE.pptxHYDROLOGICAL CYCLE.pptx
HYDROLOGICAL CYCLE.pptx
 
Composition of the atmosphere.pptx
Composition of the atmosphere.pptxComposition of the atmosphere.pptx
Composition of the atmosphere.pptx
 
Precipitation.pptx
Precipitation.pptxPrecipitation.pptx
Precipitation.pptx
 
Ch 6
Ch 6Ch 6
Ch 6
 
PRECIPITATION-1 (1).pptx
PRECIPITATION-1 (1).pptxPRECIPITATION-1 (1).pptx
PRECIPITATION-1 (1).pptx
 
climatology
climatologyclimatology
climatology
 
Hydrologic cycle
Hydrologic cycleHydrologic cycle
Hydrologic cycle
 
Prelim-Presentation-Module-1.pptx
Prelim-Presentation-Module-1.pptxPrelim-Presentation-Module-1.pptx
Prelim-Presentation-Module-1.pptx
 
Precipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptx
Precipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptxPrecipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptx
Precipitation, The Hydrosphere and Hydrologic Cycle ENM 142 Lecture 4.pptx
 
Hyd unit 1
Hyd unit 1Hyd unit 1
Hyd unit 1
 
Hydrologic precipitation
Hydrologic precipitationHydrologic precipitation
Hydrologic precipitation
 

Precipitation

  • 2. 5316 Environmental Hydrology ENVIRONMENTAL HYDROLOGY Presentation
  • 3. 5316 Environmental Hydrology Introduction Definition: In hydrology precipitation is any form of water like rain, snow, hail and sleet derived from atmospheric vapor, falling to the ground. OR What ever water reaches to earth from the atmosphere is called precipitation.
  • 4. 5316 Environmental Hydrology Introduction Precipitation is one of the most important events of hydrology. Floods and droughts are directly related to the occurrence of precipitation. Water resources management, water supply schemes, irrigation, hydrologic data for design of hydraulic structures and environmental effects of water resources development projects are related to precipitation in one way or the other. So it is important to study various aspects of precipitation.
  • 5. 5316 Environmental Hydrology Formation of Precipitation • Precipitation is the basic input to the hydrology. • Factors determining precipitation or the amount of atmospheric moisture over a region a. Climate b. Geography • Ocean surfaces is the chief source of moisture for precipitation
  • 6. 5316 Environmental Hydrology Forms Of Precipitation Precipitation
  • 7. 5316 Environmental Hydrology Forms of precipitation
  • 8. 5316 Environmental Hydrology Forms of precipitation  Drizzle: • Drizzle are the minute particles of water at start of rain. • Drizzle has diameter under 0.02 inch. • Intensity is usually less than 0.4 inch / hour. • Its speed is quite slow and they are normally evaporated rather than flowing on the surface.
  • 9. 5316 Environmental Hydrology Forms of precipitation  Rain: • Rain is the most common type of precipitation. • The size of drops is more than 0.02 inch and less than 0.25 inch in diameter. • Flow is generally produced on the ground by it if the rate of rainfall is more than the rate of infiltration of soil.  Glaze: • It is the ice coating formed on the drizzle or rain drops as it comes in contact with the cold surfaces on the ground.  Sleet: • It is the frozen rain drops cooled to the ice stage while falling through air at subfreezing temperatures
  • 10. 5316 Environmental Hydrology Forms of precipitation  Snow: • Snow is the precipitation in the form of ice crystals resulting from sublimation i.e. from water vapor to ice directly • Often the warm surface of earth melts the freshly fallen snow. • However, if the Earth’s surface is cold, the snow can accumulate on the ground  Snowflake: • It is made up of a number of ice crystals fused together  Hails: • Precipitation in the form of balls or lumps of ice over 0.2 inch diameter • Formed by alternate freezing and thawing as the particles are carried up and down in highly turbulent air currents • Their impact is also more as compared to other forms of precipitation.
  • 11. 5316 Environmental Hydrology Forms of precipitation
  • 12. 5316 Environmental Hydrology Production of Precipitation Precipitation is formed from water vapor in the atmosphere. Factors influencing precipitation formation. i. Mechanism of cooling ii. Condensation of water vapors iii.Growth of droplets iv.Accumulation of moisture
  • 13. 5316 Environmental Hydrology Production of Precipitation  Mechanism of Cooling: • There reduction in pressure when air ascends from the surface of earth to upper levels in the atmosphere is the only mechanism capable of producing the degree and rate needed to account for heavy rainfall. • The capacity of a given volume of air to hold a certain amount of water vapors is lowered due to cooling. • Super saturation is known to occur in the atmosphere so the excess moisture over saturation condenses through the cooling process which ultimately results in precipitation.
  • 14. 5316 Environmental Hydrology Production of Precipitation  Condensation of Water Vapors: • It normally occurs when there is 100% relative humidity and a condensation nuclei having an affinity for water is present. • Sources of these condensation nuclei are the particles of sea salt, carbon dioxide and the sulfurous and nitrogenous oxides emanating from surface of the earth into the atmosphere. • There appears to be always sufficient nuclei present in the atmosphere. • Condensation will always occur in air the lower atmosphere is cooled to saturation, often before the saturation point is reached.
  • 15. 5316 Environmental Hydrology Production of Precipitation  Growth of Droplets: It is required so that the liquid particles present in the clouds can reach the ground There are two process regard as most effective for droplet growth. i. Coalescence of droplets through collision. ii. Co-existence of ice crystals and water droplets. i. Coalescence of droplets through collision: • Coalescence of droplets through collision due to difference in speed of motion between larger and smaller droplets results in the growth of the droplets. • The growth of the droplets increases their weight as a result of
  • 16. 5316 Environmental Hydrology Production of Precipitation which their rate of fall is also increased whereby more collision with other droplets and more growth of droplets takes place. ii.Co-existence of ice crystals and water droplets. • The growth of droplets is also achieved by their co existence with the ice crystals. • This generally happens in a temperature range of 10oF to 20oF • Bergeron’s theory. When ice crystals and water droplets co exist in a cloud, an imbalance is caused due to lower saturation vapor pressure over ice as compared to water this results in the evaporation of water droplets and condensation of much of these droplets on ice crystals also causing their growth and ultimate fall through clouds.
  • 17. 5316 Environmental Hydrology Production of Precipitation • Accumulation of moisture: • Heavy rainfall amount over a river basin exceed by far the amount of water vapor at the atmospheric volume vertically above the basin at the beginning of the rainfall. • Convergence: The net horizontal influx of air per unit area is called convergence. • Clearly there must be a large net horizontal inflow of water vapor into the atmosphere above the basin area. • The moisture added to the atmosphere over a basin may be transported very large distance in the lowest layer of the atmosphere. When this moist current reaches a region of active. Vertical motion it rises thousands of feet and loses much of its contained water vapor in just a few hours.
  • 18. 5316 Environmental Hydrology Production of Precipitation
  • 19. 5316 Environmental Hydrology Causes of precipitation Causes of precipitation is classified into following types based upon the lifting mechanism. Cycloni c i. Convectional precipitation ii. Orographic Precipitation iii. Cyclonic Precipitation  Convectional precipitation:- • Earth becomes heated due to solar energy. • Air when comes to contact with heated earth becomes
  • 20. 5316 Environmental Hydrology Causes of precipitation • Its Creates atmospheric instability and the laps rate increase near the earth surface increase rapidly. • Lighter air rises by convection , potentially causing convective precipitation. • In convectional precipitation the main element is thermal convection of the moisture laden air. • Source of heat is only the solar radiation and it heats the major portion of the earth. • Air when comes into a low pressure atmospheric system also creats convection precipitation.
  • 21. 5316 Environmental Hydrology Causes of precipitation  Orographic Precipitation:- • Moisture laden air masses are lifted by contact with Orographic barriers and it occurs expansion and condensation. • Orographic precipitation is most pronounced on the windward side of mountain range, generally heaviest precipitation occurs where favorable Orographic effects are present. • Heaviest precipitation due to south easterlies in the subcontinent occurs along the Southern slopes of Himalaya and its other ranges. • Monsoon rainfall (June to October) decreases gradually as the distance from the line of heaviest rainfall increases.
  • 22. 5316 Environmental Hydrology Causes of precipitation  Cyclonic Precipitation:- • Precipitation in plain regions is generally cyclonic in character and depending upon whether they occur within or beyond the tropics it is divided into further two types. • Tropical • Extra tropical • Precipitation in the Indo-Pak subcontinent are of tropical variety. • In ward maritime air-mass of low latitude in high temperature tropical cyclones are violent storms formed. These are known as typhoons or cyclones.
  • 23. 5316 Environmental Hydrology Causes of precipitation • In the center of the cyclonic storm there is small low pressure air. The isobars around such a low pressure are very nearly circular in shape and generally greater than the extra tropical cyclones. • Tropical cyclones have a average diameter of over 300 to 400 miles and the wind speed around cyclones may be as high as 60 to 90 miles per hour. • In September, October and November these storms are very destructive in Bangladesh and cause considerable loss of life and property over the coastal districts.
  • 24. 5316 Environmental Hydrology Distribution of precipitation over different types of surfaces
  • 25. 5316 Environmental Hydrology Precipitation data and its analysis • Precipitation Data • Precipitation data are necessary for most land use plans and for hydrologic planning like water for human, agriculture, disposal of waste water and the control of excess rainfall . • In agriculture precipitation data can be indicate when and where a lack or a surplus of water for crops may be expected. • State and federal government have collected and published precipitation data and it is available in some libraries, in electronic tapes or CD’s and now it is also available on the Web. • Special reports are published on special occasions like flood events of major importance, rainfall rate duration frequency or droughts.
  • 26. 5316 Environmental Hydrology Precipitation data and its analysis • Analysis of precipitation data • Point Data Analysis • Point precipitation data refers to precipitation of a station, data could be in form of hourly record, daily record, monthly precipitation or annual precipitation. • Depending upon the nature of catchment and its area, there could be as many gauging stations as feasible. Before using records from a rain gauge check its continuity and consistency. • Record may not be continuous and consistent due to many reasons • Now we will discuss the checking consistency of data and hence its adjustment accordingly.
  • 27. 5316 Environmental Hydrology Precipitation data and its analysis  Estimation Of Missing Precipitation Record • The precipitation record should be complete but due to absences of the observer or because of instrumental failures Some precipitation stations may have short breaks in the records. • U.S. Weather Bureau, estimates the missing precipitation of a station from the observations of precipitation at some other stations as close to and as evenly spaced around the station with the missing record as possible. • The station whose data is missing is called interpolation station and gauging stations whose data are used to calculate the missing station data are called index stations. There are two methods for estimation of missing data. i. Arithmetic mean method ii. Normal ratio method
  • 28. 5316 Environmental Hydrology Precipitation data and its analysis • If the normal annual precipitation of the index stations lies within ± 10% of normal annual precipitation of interpolation station then arithmetic mean method applies otherwise the normal ratio method is used for this purpose . Consider that record is missing from station “X” Now let N= Normal annual precipitation. (Mean of 30 years of annual precipitation data) P = Storm Precipitation. Let Px is the missing precipitation for station “X” and Nx is normal annual precipitation of station this station, N a, Nb & Nc are normal annual precipitations of near by three stations, A, B and C respectively and Pa, Pb, Pc are the storm precipitation of that
  • 29. 5316 Environmental Hydrology Precipitation data and its analysis Now we have to compare Nx with Na , Nb and Nc separately. If difference of Nx – Na, Nx - Nb, Nx – Nc is with in 1/10% of Nx then we use, simple arithmetic mean method otherwise the normal ratio method  Simple Arithmetic Mean Method According to the arithmetic mean method the missing precipitation is given as 1 i= n Px = ∑ Pi where n is number of nearby stations. n i=1 In case of three stations 1, 2 and 3 Px = (P1 + P2 + P3)/3 and naming stations as A, B and C instead of 1, 2 and 3 Px = (Pa + Pb + Pc)/3
  • 30. 5316 Environmental Hydrology Precipitation data and its analysis  Normal Ratio Method According to the arithmetic mean method the missing precipitation 1 i=n N x is ∑ Pi n i =1 N i Px = where Px is the missing precipitation for any jth period at the interpolation station “X”. Pi is the precipitation. for the same period at the “ith” station of a group of index stations and “Nx” and Ni are 1 i=n N x the ∑ normal annual Pi precipitation values for the X and ith stations e.g. n i =1 N i Px =
  • 31. 5316 Environmental Hydrology Consistency of Precipitation Data • Using precipitation in the solution of hydrologic problems, it is necessary to ascertain that time trends in the data are due to meteorological changes. • Quite frequently these trends are the result of the changes in the gauge location are not disclosed in the published record, changes in the intermediate surroundings such as construction of buildings or growth of trees, etc. and changes in the observation techniques. • The consistency of the record then is required to be determined and the necessary adjustments be made. This can be achieved by the method called the double mass curve technique. • The double mass curve is obtained by plotting the accumulated precipitation at the station in question along X-axis and the average accumulated precipitation of a number of other nearby stations which are situated under the same meteorological conditions along Y-axis.
  • 32. 5316 Environmental Hydrology Consistency of Precipitation Data If the curve has a constant slope, the record of station “X” is consistent. However, if there is any break in the slope of the curve, the record of the station is inconsistent and has to be adjusted by the formula Pa = (Sa / So) x Po Where Pa = Adjusted precipitation. Po = Observed Precipitation . Sa =Slope prior to the break in the curve So =Slope after the break in the curve.
  • 33. 5316 Environmental Hydrology Precipitation Events • A storm is described by several key parameters and total amount of precipitation or depth, usually in inches and millimeters or centimeters. • Duration:- • The time from the beginning of the storm until the end of the storm is called duration. • The average rate of precipitation or intensity, is found by dividing the amount of precipitation during a given period by the length of that period and it is measured in inches, millimeter or centimeter per
  • 34. 5316 Environmental Hydrology Precipitation Events Precipitation events can be divided into three types i. Geographical And Seasonal Variation ii. Historic Time Trends iii.Storm Area Patterns  Geographical And Seasonal Variation Annual precipitation is different in the different countries For Example: In contiguous U.S average annual precipitation is 30 in.(75cm) but there is great spatial variation amounts and seasonality across the country due to availability of moisture , temporal variance , difference of precipitation mechanism.
  • 35. 5316 Environmental Hydrology U.S. Annual Precipitation
  • 36. 5316 Environmental Hydrology Precipitation Events In the figure mountains of extreme pacifc northwest, mean annual mountains of the extreme pacific mean annual precipitation is upto 140 in. is moving wet and cool air masses, midlatitude cyclones, and orographic lifting over mountains.
  • 37. 5316 Environmental Hydrology Precipitation Events  Historic Times Trends:- Climate tends to fluctuate in cycles even now there is concern about long term global warming with unknown regional effects on precipitation. Over's the past few the past few hundred years precipitation has tended fluctuate in cycles of about 3, 7, 15 to 20 and 100 or so years.  Storm Area Patterns:- Rainfall amounts, duration, and intensities vary spatially within the area covered by a given storm. Large area storms such as large frontal system, tend to be more uniform in distribution and have longer durations.
  • 38. 5316 Environmental Hydrology Measurement of Precipitation  Amount of Precipitation:- The amount of precipitation means the vertical depth of water that would accumulate on a level surface, if the precipitation remains where it falls. The amount of precipitation is measured in length units (inches, ft., cm, etc.).  Intensity of precipitation:- Amount of precipitation per unit time is called the intensity of precipitation. Both the amount and rate or intensity of precipitation are important in hydrologic studies. The precipitation is measured by rain gauges.  Types of rain gauges:- i. Non-recording rain gauge. (Standard rain gauge) ii. Recording rain gauge
  • 39. 5316 Environmental Hydrology Measurement of Precipitation  Non-recording rain gauge • In non recording or standard rain gauges observer has to take readings and he has to record the time also for calculation of intensity of rain fall. • The standard gauge of U.S. Weather Bureau has a collector of 8 inch diameter. • Rain passes from a collector into a cylindrical measuring tube inside the overflow can. • Its cross sectional area is 1/10th of the collector, so that 0.1 inch rain fall will fill the tube to 1 inch depth. • A measuring stick is inside it, which measures up to 0.001 inch. • When snow is expected the collector and tube are removed. The snow collected in the outer container or over flow can is melted, poured into the measuring tube and then measured.
  • 40. 5316 Environmental Hydrology Measurement of Precipitation  Recording rain gauge Recording rain gauges gives the rain recorded automatically with respect to time, so intensity of rain fall is also known. Now these rain gauges are also used it is of several types Types of recording rain gauges. i. Float type ii. Weighing type iii.Tipping bucket type
  • 41. 5316 Environmental Hydrology Measurement of Precipitation  Float type • This type of rain gauge has a receiver and a float chamber along with some recording arrangement. • In this type the rain is led into a float chamber containing a light. • The vertical movement of the float as the level of water rises is recorded on a chart with the help of a pen connected to float. T • he chart is wrapped around a rotating clock driven drum. • To provide a continuous record for 24 hours some automatic means are provided for emptying the float chamber quickly when it becomes full, the pen then returning to the bottom of the chart. • Siphoning arrangement activates when the gauge records a certain fixed amount of rain (mostly o.4 inches of rainfall.). Snow can not be measured by this type of rain gauge.
  • 42. 5316 Environmental Hydrology Measurement of Precipitation  Weighing type • The weighing type rain gauge consists of a receiver, a bucket, a spring balance and some recording arrangement. • The weighing type gauge weighs the rain or snow which falls into a bucket which is set on a lever balance. • The weight of the bucket and content is recorded on a chart by a clock driven drum. • The record is in form of a graph one axis of which is in depth units and the other has time. • The records show the accumulation of precipitation. Weighing type gauges operate from 1 to 2 months with out stop. But normally one chart is enough only for 24 hours. The receiver is removed when snow is expected. Snow can be measured by this type of rain gauge.
  • 43. 5316 Environmental Hydrology Measurement of Precipitation  Tipping bucket type • This type of gauge used at some weather bureau first order stations is equipped with a remote recorder located inside the office which is away from the actual site. • The gauge has two compartments pivoted in such a way that one compartment receives rain at one time. • This type of gauge is not suitable for measuring snow without heating the collector. Plotting is similar to that of other recording rain gauges. TIPPING BUCKET TYPE RAIN GUAGE
  • 44. 5316 Environmental Hydrology Average Precipitation over an Area • Conversion of point precipitation of various gauging stations into average precipitation of that area a great experience and skill is required. • There are three methods to find average precipitation over a basin. • Accuracy of estimated average precipitation will depend upon the choice of an appropriate method. • Methods to determine average precipitation. i. Arithmetic Mean Method ii. Thiessen Polygon Method iii.Isohyetal method
  • 45. 5316 Environmental Hydrology Average Precipitation over an Area  Arithmetic Mean Method • In this method the precipitation over area is the arithmetic average of the gauge precipitation values. • Data is taken from only those stations which are within the boundary. • This is the simplest method but only be applicable when • Basin area is flat • All stations with in practical limits are uniformly distributed over the area. • The rainfall is also nearly uniformly distributed over the area.  1 n Where I = Station P (average) =   ∑ P i Pi = Precipitation  n  i=1 N = Number of gauges
  • 46. 5316 Environmental Hydrology Average Precipitation over an Area  Thiessen Polygon Method:- The following steps are used in Thiessen Polygon Method. • Draw the given area according to a certain scale and locate the stations where measuring devices are installed. • Join all the stations to get a network of non-intersecting system of triangles. • Draw perpendicular bisectors of all the lines joining the stations and get a suitable network of polygons, each enclosing one station. It is assumed that precipitation over the area enclosed by the polygon is uniform. • Measure area of the each polygon. • Formula for the Average precipitation of the whole basin. P (average) = (P1 A1 + P2 A2 + ...+ Pn An)/A
  • 47. 5316 Environmental Hydrology Average Precipitation over an Area Where • P1 = Precipitation at station enclosed by polygon of area A1 • P2 Precipitation. at station enclosed by polygon of area A2 and so on • Pn = Precipitation at station enclosed by polygon of area An • A represents the total area of the catchment.
  • 48. 5316 Environmental Hydrology Average Precipitation over an Area  Isohyetal method:- • Draw the map of the area according to a certain scale. • Locate the points on map where precipitation measuring instruments are installed. • Write the amount of precipitation for stations. • Draw isohyets (Lines joining points of equal precipitation). • Measure area enclosed by every two isohyets or the area enclosed by an isohyet and boundary of the catchment. • Average precipitation formula
  • 49. 5316 Environmental Hydrology Average Precipitation over an Area P(average) = (P1 A1 + P2 A2 + ...........+ Pn An)/A Where P1= Average precipitation of two isohyets 1 and 2 A1= Area between these two isohyets. P2 = Average precipitation of two isohyets 2 and 3 A2 = the area b/w these two isohyets. And so on Pn = Average precipitation of isohyets n-1 and n An = the area b/w these two isohyets. Note: The last and first areas mentioned Should be between an isohyet and boundary of the catchment.
  • 50. 5316 Environmental Hydrology Average Precipitation over an Area  Rainfall Frequency Distribution:- Hydrologist need to estimate the probality that a given rainfall event will occur to assistant planners in determining the likelihood of the success or failure of a given project  Parameters i. Duration ii. Intensity iii.Return period i. Duration The time from the beginning of the storm to the end is called duration. ii. Intensity Amount of precipitation per unit time is called the intensity of precipitation.
  • 51. 5316 Environmental Hydrology Average Precipitation over an Area iii. Return period:- The return period is the average period of he time in years expected either between high intensity storm or between very dry periods.
  • 52. 5316 Environmental Hydrology Biomes and Rainfall
  • 53. Figure from weather web for frontal rainfall 5316 Environmental Hydrology
  • 54. 5316 Environmental Hydrology Precipitation and Flow  Types Of Flow i. Ground Water Flow ii. Shallow Subsurface Flow iii. Horton Overland Flow
  • 56. 5316 Environmental Hydrology Infiltration and Runoff
  • 57. 5316 Environmental Hydrology Overland flow and depression storage
  • 58. 5316 Environmental Hydrology Water movement in wet and dry grains
  • 59. 5316 Environmental Hydrology Groundwater Zones  Vertical Zones Of Subsurface Water:- There are three vertical zones of subsurface water. i. Soil water Zone:- ii. Vadose Zone:- iii. Capillary Zone:-  Soil water Zone:- • Extends from the ground surface down through the major root zone. • Its thickness is usually a few but varies with soil type and vegetation.
  • 60. 5316 Environmental Hydrology Groundwater Zones  Vadose Zone:- • Vadose zone is also called unsaturated zone. • Extends from the surface to the water table through the root zone , intermediate zone and capillary zone.  Capillary Zone:- • Capillary zone extends from the water table up to the limit of capillary rise. • It varies Inversely to the pore size of the soil and directly with the Surface tension.
  • 61. 5316 Environmental Hydrology Groundwater terminologies
  • 62. 5316 Environmental Hydrology Groundwater Terminologies  Water Table:- The level to which water will rise in a well drilled into the saturated zone.  Saturated Zone:- Occurs beneath the water table where porosity is direct measures of the water contained per unit volume.  Porosity:- Porosity average about 25% to 35% for most aquifer system. Expressed as the ratio of the volume of voids to the total volume.
  • 63. 5316 Environmental Hydrology Groundwater Terminologies  Unconfined aquifer:- An aquifer where the water table exists under atmospheric as defined by levels in shallow wells.  Confined Aquifer:- An aquifer that is overlain by a relatively impermeable unit such that the aquifer is under pressure and the water level rises above the confined unit.  Potentiometric Surface:- In a confined aquifer, the hydrostatic pressure level of water in the aquifer, defined by the water level that occurs in a lined penetrating well
  • 64. 5316 Environmental Hydrology Groundwater Terminologies  Leaky confined aquifer:- represents a stratum that allows water to flow from above through a leaky confining zone into the underlying aquifer.  Perched aquifer:- Occurs when an unconfined water zone sits on top of a clay lens, separated from the main aquifer below.
  • 65. 5316 Environmental Hydrology Hydrologic Equation • The hydrologic equation is a statement among components of Hydrologic Cycle. • It states that “Rate of Inflow minus the Rate of Outflow is equal to the Rate of change of storage” I-O = Δs/Δt where I = Rate of Inflow, O = Rate of Outflow, Δs/Δt = Rate of Change of Storage
  • 66. 5316 Environmental Hydrology Hydrologic Equation  Components of Inflow: • Precipitation • Import of water by channeling it into any given area • Groundwater Inflow from an adjoining area  Components of Outflow: • Surface runoff outflow • Water channeled out of an area for Irrigation etc. • Evaporation • Transpiration • Interception
  • 67. 5316 Environmental Hydrology Hydrologic Equation  Change in Storage: This occurs as change in • Groundwater • Surface Reservoir water and Depression storage • Detention storage
  • 68. 5316 Environmental Hydrology Water Budget in a Catchment • Calculations regarding the incoming, outgoing and changes in water quantities inside a catchment show its water budget. • This can be done by applying the Hydrologic equation to a catchment area. • Inflow can be the precipitation “P” on the ground surface • Outflow consists of Interception Losses “Li”, Surface Runoff “R” and Evaporation “E” • The storages are Infiltration “F” and Depression Storage “D”
  • 69. 5316 Environmental Hydrology Water Budget in a Catchment • The Hydrologic equation can thus be expressed as P – (Li +R + E) = D + F or R = P – (Li+ E + D + F) or R=P–L where “L” represents all losses • If all quantities on the right hand side can be measured, the surface runoff of a given catchment in response to known precipitation can easily be measured. • Very difficult to measure the exact quantities so relationships are developed and on the basis of these relationships, different quantities are estimated.

Editor's Notes

  1. Figure 2.6 Have students explain differences in precip due to air masses Rainfall type