Metabolism c

1,819 views

Published on

Published in: Business, Technology
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,819
On SlideShare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
114
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide

Metabolism c

  1. 1. METABOLISM
  2. 2. Why Study Metabolism? <ul><li>Classification of bacteria </li></ul><ul><ul><li>Oxygen Tolerance </li></ul></ul><ul><ul><li>Biochemical reactions </li></ul></ul><ul><ul><ul><li>Acids, Ammonia, Gases </li></ul></ul></ul><ul><li>Fermentation Products </li></ul><ul><ul><li>Food Products </li></ul></ul><ul><ul><ul><li>Yogurt, Sour Cream, Bread, Alcohol </li></ul></ul></ul><ul><ul><li>Commercial Products </li></ul></ul><ul><ul><ul><li>Citric Acid, Plastics </li></ul></ul></ul><ul><li>Environmental Cleanup </li></ul>
  3. 3. Ying & Yang of Metabolism <ul><li>Metabolism = Anabolism + Catabolism </li></ul><ul><li>Photosynthesis requires Respiration </li></ul><ul><li>Respiration requires Photosynthesis </li></ul><ul><li>Energy Production = Energy Consumption </li></ul>
  4. 4. Breakdown Proteins to Amino Acids, Starch to Glucose Synthesis Amino Acids to Proteins, Glucose to Starch
  5. 6. Overview of Metabolism <ul><li>Source of Energy (Photo- vs. Chemotroph) </li></ul><ul><ul><li>Source of Electrons </li></ul></ul><ul><ul><li>Carrier of Electrons </li></ul></ul><ul><ul><li>Final Electron Acceptor </li></ul></ul><ul><li>Source of Carbon (Auto- vs. Heterotroph) </li></ul><ul><ul><li>Auto- : Carbon Dioxide </li></ul></ul><ul><ul><li>Hetero- : Organic Compounds </li></ul></ul>Chapter 5
  6. 9. Electron Carriers <ul><li>Photosynthesis </li></ul><ul><ul><li>NADP + H to NADPH </li></ul></ul><ul><li>Respiration </li></ul><ul><ul><li>NAD + H to NADH </li></ul></ul><ul><ul><li>FAD + H to FADH </li></ul></ul><ul><li>Contain Niacin and Riboflavin </li></ul><ul><ul><li>Vitamins, not stable </li></ul></ul><ul><ul><li>Can’t store these molecules </li></ul></ul>
  7. 10. Movement of Electrons <ul><li>Chemical reactions </li></ul><ul><li>Oxidation Reactions </li></ul><ul><li>Reduction Reactions </li></ul><ul><li>Reactions Coupled Redox reactions </li></ul>
  8. 11. Chapter 5
  9. 12. Example of Redox Equations
  10. 13. Final Electron Acceptor <ul><li>Photosynthesis </li></ul><ul><ul><li>CO 2 + H’s to CH 2 O </li></ul></ul><ul><ul><li>Stores energy </li></ul></ul><ul><li>Respiration </li></ul><ul><ul><li>Aerobic </li></ul></ul><ul><ul><ul><li>1/2 O 2 + H 2 to H 2 O </li></ul></ul></ul><ul><ul><li>Anaerobic </li></ul></ul><ul><ul><ul><li>Fermentation </li></ul></ul></ul>
  11. 14. Examples <ul><li>ATP  ADP + P </li></ul><ul><ul><li>Oxidation, release energy </li></ul></ul><ul><li>ADP + P  ATP </li></ul><ul><ul><li>Reduction, stores energy </li></ul></ul><ul><li>NAD + H  NADH </li></ul><ul><li>FADH  FAD + H </li></ul><ul><li>NH 4 + 1 1/ 2 O 2  NO 2 - +H 2 O + 2H + ATP </li></ul><ul><li>2H 2 + O 2  2H 2 O </li></ul>Chapter 5
  12. 15. Respiration <ul><li>Overview; </li></ul><ul><ul><li>Glucose to Carbon dioxide + Water +Energy </li></ul></ul><ul><ul><li>C 6 H 12 O 6 + O 2  6CO 2 + 6H 2 O + 38 ATP </li></ul></ul><ul><ul><li>Glucose is highly reduced; contains energy </li></ul></ul><ul><ul><li>Oxygen receives the electrons to form energy </li></ul></ul><ul><li>4 separate reactions </li></ul><ul><ul><li>Glycolysis, Transition Reaction, Krebs Cycle, Electron Transport, Chemiosomosis </li></ul></ul><ul><li>Requires Oxygen </li></ul>
  13. 16. Biochemical Pathways of Energy Metabolism Series of controlled reactions rather than in a single burst .
  14. 17. Glycolysis- 10 steps <ul><li>Glucose is Phosphorylated to form Fructose 1,6-diphosphate </li></ul><ul><li>Split to form 2 Glyceraldehyde 3-phosphate </li></ul><ul><li>Final Products are: </li></ul><ul><ul><li>2 Pyruvic Acid (C 3 H 4 O 3 ) </li></ul></ul><ul><ul><ul><li>Compare to original glucose - C 6 H 12 O 6 </li></ul></ul></ul><ul><ul><li>2 NADH </li></ul></ul><ul><ul><li>2 ATP </li></ul></ul>Chapter 5
  15. 19. Carbohydrate metabolism <ul><li>Pentose Phosphate Pathway – hexose monophosphate shunt </li></ul><ul><li>Operates simultaneously with glycolysis </li></ul><ul><li>Provides a means for the breakdown of 5 carbon sugars as well as glucose </li></ul>
  16. 20. Carbohydrate Metabolism <ul><li>EDP is still another pathway for oxidizing glucose to pyruvic acid </li></ul><ul><li>Yield 1 ATP </li></ul>
  17. 22. <ul><li>Used by Gram negatives (e.g. Rhizobium, Psuedomonas, Agrobacterium), usually not by Gram positives. </li></ul>
  18. 23. <ul><li>The Pentose Phosphate pathway (hexose monophosphate shunt) is used to metabolize five-carbon sugars; one ATP and 2 NADPH molecules are produced from oxidation of one glucose molecule. Produces intermediates for nucleotide and nucleic acid synthesis, glucose synthesis from CO 2 in photosynthesis, and some amino acids. </li></ul>
  19. 27. Chapter 5
  20. 29. Fermentation Products from Pyruvate <ul><li>Homolactic = Lactic Acid </li></ul><ul><ul><li>Yogurt, Lactobacillus </li></ul></ul><ul><li>Alcohol + CO 2 </li></ul><ul><li>Propionic Acid </li></ul><ul><li>Butyric Acid </li></ul><ul><li>Acetic Acid </li></ul><ul><li>Succinic Acid </li></ul><ul><li>Butylene to Acetoin </li></ul><ul><ul><li>basis for VP Test (Vogues-Proskauer) </li></ul></ul>
  21. 30. Fermentation Products <ul><li>Alcohol and Carbon Dioxide </li></ul><ul><ul><li>Yeast mostly </li></ul></ul><ul><li>Lactic Acid </li></ul><ul><ul><li>Humans, muscles without oxygen </li></ul></ul><ul><ul><li>Bacteria (Lactobacillus-yogurt) </li></ul></ul><ul><li>Butyric Acid </li></ul><ul><ul><li>Rancid butter, Clostridium-gangrene </li></ul></ul><ul><li>Acetoin </li></ul><ul><ul><li>Butanediol fermentation in Klebsiella </li></ul></ul><ul><li>Propionic Acid </li></ul><ul><ul><li>Swiss Cheese </li></ul></ul>Chapter 5
  22. 31. Chapter 5 Fermentation in Yeast
  23. 32. Chapter 5 Fermentation in Muscle
  24. 34. Fermentation of Carbohydrates <ul><li>Glucose  Pyruvic Acid  fermentation or respiration </li></ul><ul><li>Release energy from sugars or other organic molecules such as amino acids, organic acids, purines and pyrimidines </li></ul><ul><li>Does not require oxygen </li></ul><ul><li>Does not require an electron transport chain </li></ul>
  25. 35. Fermentation of Carbohydrates <ul><li>Uses an organic molecule as the final electron acceptor </li></ul>
  26. 36. Other Fermentation Pathways
  27. 37. Other Fermentation Pathways Swiss cheese. Beer, wine, bread. Flatulence! LAB & our own muscles.
  28. 40. Fermentation <ul><li>Products – ethanol and carbon dioxide </li></ul><ul><li>Brewing and wine making are anaerobic processes if oxygen is present further oxidation will occur </li></ul>
  29. 41. Respiration <ul><li>Is an ATP generating process in which chemical compounds are oxidized and the final electron acceptor is almost always an inorganic molecule </li></ul><ul><li>Electron transport chain – readily accept electrons from one compound and pass them to another </li></ul><ul><li>ATP generated by oxidative phosphorylation </li></ul>
  30. 42. Respiration <ul><li>Oxidize organic molecules completely to carbon dioxide </li></ul><ul><li>ATP yield greater in respiration than in fermentation </li></ul>
  31. 43. Krebs Cycle <ul><li>As acetyl CoA enters the Krebs cycle, CoA detaches from the acetyl group and then can pick up more acetyl groups for the next Krebs cycle </li></ul><ul><li>Series of redox reactions </li></ul><ul><li>Yield 38 ATP </li></ul>
  32. 46. Protein Catabolism <ul><li>Require extracellular enzymes – proteases and peptidases </li></ul><ul><li>Deaminate amino acids </li></ul><ul><li>Decarboxylation </li></ul>
  33. 47. Lipid Catabolism <ul><li>Fats  fatty acids + glycerol </li></ul><ul><li>Requires lipases </li></ul><ul><li>Convert glycerol into dihydroxyacetone phosphate </li></ul><ul><li>Fatty acids catabolized by beta oxidation </li></ul>
  34. 50. Energy Utilization <ul><li>Microbes use ATP to provide energy for the transport of substances across plasma membranes </li></ul><ul><li>For flagellar motion </li></ul><ul><li>Biosynthesis of new cell components </li></ul>
  35. 51. Biosynthesis of Polysaccharides <ul><li>Bacteria synthesize glycogen from adenosine diphosphoglucose – ADPG </li></ul><ul><li>Synthesize capsular material </li></ul>
  36. 52. Biosynthesis of Lipids <ul><li>Microbes synthesize lipids, by uniting glycerol and fatty acids </li></ul><ul><li>Structural components of plasma membrane and Gram – cell wall </li></ul><ul><li>Lipids serve as storage forms of energy </li></ul>
  37. 53. Biosynthesis of Amino Acids <ul><li>Required for protein synthesis </li></ul><ul><li>E. coli – synthesize all the amino acids they need </li></ul><ul><li>Other microbes require some preformed aa from the environment in order to metabolize proteins </li></ul><ul><li>Krebs cycle source of precursors for aa </li></ul>
  38. 54. Biosynthesis of Amino Acids <ul><li>Other sources of precursors are derived from the pentose phosphate pathway and the EDP </li></ul><ul><li>AA building blocks for proteins (toxins) </li></ul>
  39. 56. Biosynthesis of Purines & Pyrimidines <ul><li>Sugars composing nucleotides are derived from either the PPP or the EDP </li></ul><ul><li>Aspartic acid, glycine and glutamine play an essential role in the biosynthesis of purines and pyrimidines </li></ul><ul><li>The C and N atoms derived from these aa form the backbone of the purines and pyrimidines </li></ul>
  40. 57. Integration of Metabolism <ul><li>Anabolic and catabolic reactions are integrated through a group of common intermediates </li></ul><ul><li>Krebs cycle – operate in both anabolic and catabolic reactions produce intermediates that lead to the synthesis of amino acids, fatty acids and glycerol – amphibolic pathways </li></ul>
  41. 59. Chemo Organic Autotrophs <ul><li>• Two types </li></ul><ul><li>– Chemo organic autotroph </li></ul><ul><li>• Derives their energy from organic compounds </li></ul><ul><li>and their carbon source from inorganic </li></ul><ul><li>compounds </li></ul><ul><li>– Lithoautotrophs </li></ul><ul><li>• Neither sunlight nor organics used, rather it </li></ul><ul><li>relies totally on inorganics </li></ul>
  42. 60. Photoautotroph <ul><li>• Derive their energy from sunlight </li></ul><ul><li>• Transform light rays into chemical </li></ul><ul><li>energy </li></ul><ul><li>• Primary producers of organic matter for </li></ul><ul><li>heterotrophs </li></ul><ul><li>• Primary producers of oxygen </li></ul><ul><li>• Ex. Algae, plants, some bacteria </li></ul>
  43. 61. Chemoheterotrophs <ul><li>Derive both carbon and energy from </li></ul><ul><li>organic compounds </li></ul><ul><li>– Saprobic </li></ul><ul><li>• decomposers of plant litter, animal matter, and dead microbes </li></ul><ul><li>– Parasitic </li></ul><ul><li>• Live in or on the body of a host </li></ul>
  44. 64. Iron precipitation at near an iron mine: Iron rich (Fe 2+ ) anaerobic waters become oxygenated at the surface
  45. 65. Precipitated iron seeping from an iron bog in Colorado Bog iron ore from Poland Bog iron ore from coastal Virginia swamps

×