Successfully reported this slideshow.
RADAR CROSS SECTION(SAMPLE ASSIGNMENT)
Our online Tutors are available 24*7 to provide Help with Help with Radar Cross Sec...
up = urp*u0;
ep = erp*e0;
omega = 2*pi*f;
kb = omega * sqrt(ub*eb);
kp = omega * sqrt(up*ep);
for n=1:N
%% [*] p34
an(1,n)...
output = legendre(n,cos(theta));
output=output(2);
function output=PI(n,theta)
output=-1*Pn1Cos(n,theta)/sin(theta);
funct...
Upcoming SlideShare
Loading in …5
×

Radar cross section project

319 views

Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

Radar cross section project

  1. 1. RADAR CROSS SECTION(SAMPLE ASSIGNMENT) Our online Tutors are available 24*7 to provide Help with Help with Radar Cross Section Homework/Assignment or a long term Graduate/Undergraduate Help with Radar Cross SectionProject. Our Tutors being experienced and proficient in Help with Radar Cross Sectionensure to provide high quality Help with Radar Cross SectionHomework Help. Upload your Help with Radar Cross SectionAssignment at ‘Submit Your Assignment’ button or email it to . You can use our ‘Live Chat’ option to schedule an Online Tutoring session with our Help with Radar Cross Section Tutors. scattering of a object This sample assignment calculates radar cross section (RCS) of the scattering of a object using mie theory. mieHKURCS(a,f,erb,urb,erp,urp,N) %% funtion [an,bn,RCSTheta,RCSPhi,output] = mieHKURCS(a,f,erb,urb,erp,urp,N) %% Based on [*]L.Tsang,J.A.Kong,and K.H.Ding's "Scattering of Electromagnetic waves (volume I,Theories and Applications)" % Author: Shao Ying HUANG, 29 Sept 2010 %% Input % a: radius; % f: frequency; % erb: relative epsilon (background); % urb: relative mu (background); % erp: relative epsilon (the sphere) e.g. -5.3336+1.9698*i; % urp: relative mu (the sphere); % N: number of iteration, e.g. 20 (Criteria for N: aN ~ 0; bN ~ 0; cN ~ 0; dN ~ 0) %% Output % an,bn (note: need to double check whether an and bn converge) % RCSTheta,RCSPhi, % output[theta, RCSTheta(phi=0, ei=x),RCSPhi(phi=90,ei=x)] % output(:,2) is the MOM case % MoM comparison:: plot(output(:,1),output(:,2)) %% function [an,bn,RCSTheta,RCSPhi,output] = mieHKURCS(a,f,erb,urb,erp,urp,N) format long; e0=1/(4*pi*9*10.^9); %farads/m u0=4*pi*1e-7; %henries/m ub = urb*u0; eb = erb*e0; info@assignmentpedia.com
  2. 2. up = urp*u0; ep = erp*e0; omega = 2*pi*f; kb = omega * sqrt(ub*eb); kp = omega * sqrt(up*ep); for n=1:N %% [*] p34 an(1,n)=(kp*kp*JSph(n,kp*a)*JDerPack(n,kb*a)-kb*kb*JSph(n,kb*a)*JDerPack(n,kp*a))... /(kp*kp*JSph(n,kp*a)*HDerPack(n,kb*a)-kb*kb*HSph(n,kb*a)*JDerPack(n,kp*a)); bn(1,n) = (JSph(n,kp*a)*JDerPack(n,kb*a)-JSph(n,kb*a)*JDerPack(n,kp*a))... /(JSph(n,kp*a)*HDerPack(n,kb*a)-HSph(n,kb*a)*JDerPack(n,kp*a)); end %% phi = 0, ei=x, e-field in the plane of observation numTheta=361; theta = 1e-7:pi/(numTheta-1):pi+1e-7; for j = 1:numTheta EsThetaTemp = 0; for n=1:N EsThetaTemp = EsThetaTemp + ((2*n+1)/n/(n+1))*(an(1,n)*TAU(n,theta(j))+bn(1,n)*PI(n,theta(j))); end RCSTheta(1,j)=(abs(EsThetaTemp)^2)*4*pi/kb/kb; end RCSTheta = 10.*log10(RCSTheta); xaxis = 180:-0.5:0; output(:,1) = xaxis'; output(:,2) = RCSTheta'; %% phi = 90 degree, ei=x,e-field normal to the plane of observation for j = 1:numTheta EsPhiTemp = 0; for n=1:N EsPhiTemp = EsPhiTemp + ((2*n+1)/n/(n+1))*(an(1,n)*PI(n,theta(j))+bn(1,n)*TAU(n,theta(j))); end RCSPhi(1,j)=(abs(EsPhiTemp)^2)*4*pi/kb/kb; end RCSPhi = 10.*log10(RCSPhi); output(:,3) = RCSPhi'; function output=Pn0Cos(n,theta) output = legendre(n,cos(theta)); output=output(1); function output=Pn1Cos(n,theta)
  3. 3. output = legendre(n,cos(theta)); output=output(2); function output=PI(n,theta) output=-1*Pn1Cos(n,theta)/sin(theta); function output = TAU(n,theta) output = (sin(theta)/(1-cos(theta)^2))... *((n+1)*cos(theta)*Pn1Cos(n,theta)-n*Pn1Cos(n+1,theta)); % Spherical Bessel function output = JSph(n,z) output = sqrt(0.5*pi/z)*besselj(n+0.5,z); function output = JSphDer(n,z) output = JSph(n-1,z)-((n+1)/z)*JSph(n,z); function output = JDerPack(n,z) output = JSph(n,z)+z*JSphDer(n,z); % Spherical Hankel of the 1st kind function output = HSph(n,z) output = sqrt(0.5*pi/z)*besselh(n+0.5,z); function output = HSphDer(n,z) output = HSph(n-1,z)-((n+1)/z)*HSph(n,z); function output = HDerPack(n,z) output = HSph(n,z)+z*HSphDer(n,z); visit us at www.assignmentpedia.com or email us at info@assignmentpedia.com or call us at +1 520 8371215

×