Successfully reported this slideshow.

From farm to fork - water soluble vitamins


Published on

Advancend food Processing course presentation.
Gioacchino dell'Aquila - Food Engineering Master Degree - Istanbul Aydin University -

Published in: Technology, Business
  • Be the first to comment

From farm to fork - water soluble vitamins

  1. 1. From Farm to Fork Effect of thermal treatment on food nutrient content Water soluble vitamins
  2. 2. Heat treatment Advantages vs disadvantages <ul><li>Control of processing conditions </li></ul><ul><li>Capability to produce shelf-stable food </li></ul><ul><li>No refrigeration required in most of the cases </li></ul><ul><li>Destruction of anti-nutritional factors </li></ul><ul><li>Improvement in the availability of some nutrients </li></ul><ul><li>Improvement of safety </li></ul>
  3. 3. ( contd ) <ul><li>Alteration or destruction of food component </li></ul><ul><li>Change in texture, flavour, taste, colour </li></ul><ul><li>Product may burn or overcook </li></ul><ul><li>Loss of nutritional value </li></ul><ul><li>Less destructive processing methods exist </li></ul>
  4. 4. Water-soluble vitamins Vitamin B complex group of compounds soluble in aqueous solution including Thiamine (B1), Riboflavin (B2), Niacin (B3), Pantothenic acid (B5), Cyanocobalamin (B12) and Vitamin B6 (pyridoxal, pyridoxine or pyridoxamine). Biotin , Lipoic acid and Folic acid and Ascorbic acid are also part of the water-soluble vitamins.
  5. 5. Tab.1 Major food sources of water-soluble vitamins
  6. 6. Ascorbic acid Formation of collagen, wound healing; maintaining blood vessels, absorption of iron, calcium, folacin; production of brain hormones and immune factors; antioxidant Most unstable under heat, drying, storage; very soluble in water, leaches out of some vegetables during cooking; alkalinity (baking soda) destroys vitamin C Thiamin Helps release energy from foods; promotes normal appetite; important in function of nervous system Losses depend on cooking method, length, alkalinity of cooking medium; destroyed by sulfite used to treat dried fruits such as apricots; dissolves in cooking water. Riboflavin Helps release energy from foods; promotes good vision, healthy skin. Sensitive to light; unstable in alkaline solutions. Niacin Energy production from foods; aids digestion, promotes normal appetite; promotes healthy skin, nerves. - Vitamin B6 Aids in protein metabolism, absorption; aids in red blood cell formation; helps body use fats. Considerable losses during cooking. Folic Acid Aids in protein metabolism; promotes red blood cell formation; prevents birth defects of spine, brain; lowers homocystein levels and thus coronary heart disease risk. Easily destroyed by storing, cooking and other processing. Pantothenic Acid Involved in energy production; aids in formation of hormones bout half of pantothenic acid is lost in the milling of grains and heavily refined foods Biotin Helps release energy from carbohydrates; aids in fat synthesis - Organic Function Stability in food
  7. 7. Processing by application of heat <ul><li>Heat processing using steam or water </li></ul><ul><ul><li>Blanching </li></ul></ul><ul><ul><li>Pasteurisation </li></ul></ul><ul><ul><li>Heat sterilisation </li></ul></ul><ul><ul><ul><li>In container sterilisation </li></ul></ul></ul><ul><ul><ul><li>UHT / aseptic processes </li></ul></ul></ul><ul><ul><li>Evaporation and distillation </li></ul></ul><ul><ul><li>Extrusion </li></ul></ul>
  8. 8. ( contd ) <ul><li>Heat processing using hot air </li></ul><ul><ul><ul><li>Dehydratation </li></ul></ul></ul><ul><ul><ul><li>Baking and roasting </li></ul></ul></ul><ul><li>Heat processing using hot oils </li></ul><ul><ul><ul><li>Frying </li></ul></ul></ul><ul><li>Heat processing using direct and radiated energy </li></ul><ul><ul><ul><li>Dielectric heating </li></ul></ul></ul><ul><ul><ul><li>Ohmic heating </li></ul></ul></ul><ul><ul><ul><li>Infrared heating </li></ul></ul></ul>
  9. 9. Blanching <ul><li>Handling raw food for further processing </li></ul><ul><li>Pre-treatment prior to </li></ul><ul><li>Heat sterilisation </li></ul><ul><li>Dehydratation </li></ul><ul><li>Freezing </li></ul><ul><li>- Conventional steam blanching </li></ul><ul><li>- Conventional hot water blanching </li></ul><ul><li>- Microwave Blanching </li></ul>
  10. 10. Steam blanching + cooling <ul><li>Smaller loss in water soluble components </li></ul><ul><li>Smaller volumes of waste </li></ul><ul><li>Nutrient losses reduced by pre-conditioning </li></ul><ul><li>(hot air treatment prior to blanching) </li></ul><ul><li>Cold air - Higher nutrient retention, loss of weight </li></ul><ul><li>Running water (fluming) – losses due to leaching </li></ul><ul><li>Individual quick blanching (IQB) </li></ul>
  11. 11. <ul><li>Factors influencing vitamin loss in blanching </li></ul><ul><li>Leaching, oxidation, thermal destruction </li></ul><ul><li>Preparation method used : cutting, slicing, dicing </li></ul><ul><li>Surface area/volume of food </li></ul><ul><li>Method of blanching and cooling </li></ul><ul><li>Time/Temperature </li></ul><ul><li>Quality, variety and seasonality of food </li></ul>
  12. 12. Tab.2 Effect of blanching method on ascorbic acid content in selected food <ul><li>Rate of ascorbic acid loss is influenced also by several factors: </li></ul><ul><li>PH, </li></ul><ul><li>metals as copper or iron, </li></ul><ul><li>enzymes, </li></ul><ul><li>presence of oxygen </li></ul><ul><li>Time / Temperature </li></ul>
  13. 13. Pasteurisation <ul><li>Goals: </li></ul><ul><li>Minimisation of foodborne illnesses </li></ul><ul><li>Extention of shelf-life </li></ul><ul><li>Destruction of spoilage microorganism </li></ul><ul><li>Enzyme inactivation </li></ul>
  14. 14. <ul><li>Mild heating treatment reduce components loss </li></ul><ul><li>but </li></ul><ul><li>HTST (flash pateurisation) vs Holder Processing </li></ul><ul><li>Applying high temperature / short time </li></ul><ul><li>Best retention of nutrients </li></ul><ul><li>Less changes in flavour </li></ul><ul><li>Destruction of microorganism </li></ul><ul><li>Inactivation of enzyme </li></ul><ul><li>Scientific literature reports -10 -20% of vitamin C </li></ul><ul><li>reduced by deareation and proper choice of packaging (glass better than plastic or paper) </li></ul>
  15. 15. Tab.3 Vitamin losses during pasteurisation of milk (Food processing technology, 2000)
  16. 16. Heat sterilisation <ul><li>Inactivation of enzymes </li></ul><ul><li>Descruction of microbiological activities </li></ul><ul><li>Food spoilage </li></ul><ul><li>Foodborne diseases </li></ul><ul><li>Commercial standard (10% of viable organism) </li></ul><ul><li>Shelf-life > 6 months </li></ul><ul><li>Adequate storage required </li></ul><ul><li>Refrigeration not needed </li></ul><ul><li>Changes in nutritional and sensory quality of food </li></ul>
  17. 17. In-container sterilisation time is affected by Heat resistence of target enzyme or microb Rate of Heating (saturated steam, hot water) Material and size of packaging pH, physical state of food
  18. 18. Ultra High Temperature Food is sterilised before filling containers Atmosphere is sterile (aseptic processing) Different behaviour of low acid and acid food In Low acid food Thiamin (50-75%) and Pantothenic acid (20-35%) and Vitamin C show relevant losses In Acid food Riboflavin, Vitamin C and Pantothenic acid likely to be loss
  19. 19. Tab.4 Loss of vitamins in canned and bottled food
  20. 20. UHT processed vegetables and meat products Thiamin and Pyridoxin loss Other vitamins are largely unaffected UHT processed milk Retention of Riboflavin, Pantothenic acid, Niacin In- bottle sterilised milk Vitamin C (-90%), Pirydoxin (-50%), Folacin (-50%)
  21. 21. Tab.5 Changes in nutritional value of milk after UHT and in bottle sterilisation
  22. 22. Supply Chain, Storage and Shelf-life <ul><li>Time that a food lasts a acceptable and safe product in distribution (Storage, Marketing, Home) </li></ul><ul><li>Abiotic spoilage (Light, Moisture, Oxygen, Temp.) </li></ul><ul><li>Prediction of conditions the food will be exposed </li></ul><ul><li>Choose of a proper packaging </li></ul>
  23. 23. Consumer expectation Appearance, colour, aroma, enjoyability, price, safety, nutritional value Research for more efficient technology to satisfy the demand Development of new trends (product)
  24. 24. Are these technologies enough efficient to overcome and to supply the market needs?
  25. 25. References <ul><li>Fellows, P., 2000. Food processing technology. Principles and practice. </li></ul><ul><li>Da-Wen Sun, 2005. Emerging technologies for food processing </li></ul><ul><li>Berk, Z., 2009. Food process engineering and technology </li></ul><ul><li>Brennan, J.G., 2006. Food processing handbook </li></ul><ul><li>Sihna, N.K., 2011. Handbook of vegetable and vegetable processing </li></ul><ul><li>Balasundaram G., et al. , 2004. Nutrition and dietetics </li></ul><ul><li>Kilcast, D., Subramaniam, P., 2000. The stability and shelf-life of food </li></ul>
  26. 26. Thank you for your attention