Us and mri shoulder us 20140611 webversie

2,345 views

Published on

Us and mri shoulder us 20140611 webversie

  1. 1. Shoulder JL Gielen J Veryser
  2. 2. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  3. 3. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  4. 4. Cuff Ultrastructure • Layer 1: corocohumeral ligament superficial fibres • Layer 2: thick main cuff portion: parallel bundles • Layer 3: thick cuff portion: smaller bundles with less uniform oriëntation • Layer 4: rotator cable or transverse band, force distribution through perpendicular bundle orientation, deep fibres of coracohumeral ligament • Layer 5: capsule, random fibre orientation US MR
  5. 5. Rotator Cable (C) and Crescent (B) Cable: transverse force distribution Articular side tears at cable: greater functional impact US MR
  6. 6. Coracohumeral Ligament Medial Lateral US MR
  7. 7. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  8. 8. Radiograph US
  9. 9. Radiograph Decubitus Dorsalis Endorotatio US
  10. 10. Ultrasound • Scanning procedure • Minimal still image requirements US
  11. 11. Infraspinatus: Muscle > Tendon Insertion US
  12. 12. AC Joint Neutral Cross Arm Test US
  13. 13. AC Joint AC Joint Clavicular compression US
  14. 14. Superior-Posterior Labrum US
  15. 15. Superior-Posterior Labrum US
  16. 16. Internal Impingement Test • Video Endo>Exorotatie US
  17. 17. Crass Infraspinatus T Infraspin US
  18. 18. Crass Infraspinatus T Infraspin US
  19. 19. Crass Infraspinatus T Infraspin US
  20. 20. Crass Supraspinatus T Supraspin US
  21. 21. Crass Infraspinatus T Transverse IS US
  22. 22. Crass Supraspinatus T Transverse SS US
  23. 23. Crass Supraspinatus T Transverse SS Interval US
  24. 24. Neutral Cuff Interval Transverse SS Interval US
  25. 25. Exorotation Sulcus Intertubercularis Transverse Biceps CL US
  26. 26. Exorotation Biceps C L Longitudinal Biceps CL US
  27. 27. SS Crass Modified Crass
  28. 28. Modified Crass SS and Biceps
  29. 29. Modified Crass SS
  30. 30. Modified Crass Coraco-acromial Ligament US
  31. 31. Coraco-acromial Ligament, Dynamic Examination US
  32. 32. Coracohumeral ligament Superior glenohumeral lig Distal superficial part US
  33. 33. Exorotation Coracohumeral ligament Origin US
  34. 34. Coracohumeral Ligament Test • Video Endo>Exorotatie US
  35. 35. Exorotation Subscapular T Supscapular US
  36. 36. Exorotation Subscapular T Supscapular US
  37. 37. Pectoralis M T Teres Major Latissimus Dorsi Pect Major US
  38. 38. Supraspinatus M SS Muscle Mass US
  39. 39. Suprascapular Notch Suprascap Notch US
  40. 40. Suprascapular Notch Suprascap Notch US
  41. 41. Glenohumeral Capsule Axillary Aproach US
  42. 42. Reference Level: Axial C6 Root STCLM Long Col Jug I A Car C6 Scal Ant US
  43. 43. Reference Level: Axial C6 Root US
  44. 44. Axial Roots C 5-6-7 Scal Ant Scal Med Scal Post STCLM US
  45. 45. Roots Coronal-Oblique C6 US
  46. 46. Roots Coronal-Oblique C7 US
  47. 47. Roots Coronal-Oblique C5 US
  48. 48. Roots Coronal-Oblique C4 US
  49. 49. Ultrasound • Scanning procedure • Minimal still image requirements: • Annotations!!, lateralisation!! – AC joint longitudinal: with cross arm test – RC components longitudinal with thickness • SS, SSC, IS – Subdeltoid space thickness – RC interval – Biceps long head longitudinal – Pathology US
  50. 50. Ultrasound Abduction Endorot: AC > IS > SS US
  51. 51. Ultrasound Abduction Endorot: Transverse US
  52. 52. Ultrasound Neutral Position: Interval - Biceps US
  53. 53. Ultrasound Neutral Position: Biceps tendon US
  54. 54. Ultrasound Neutral Position US
  55. 55. Ultrasound Exorotation: Subscapularis US
  56. 56. Index • Normal Anatomy • Examination Procedure • Pathology US MR
  57. 57. Pathology • Minor Glenohumeral Instability • Cuff Lesions • AC Joint • Biceps Caput Longum • Impingement US MR
  58. 58. Minor Glenohumeral Instability • Purpose: Detection and Grading of – Causes of minor shoulder instability • Anatomical variants • Congenital disorders • Lesions – Lesions due to (minor) shoulder instability • Techniques – Radiography – Ultrasound – CT-arthrography – MRI, direct and indirect arthro-MRI US MR
  59. 59. Minor Shoulder Instability • Static Constraints • Dynamic Constraints US MR
  60. 60. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  61. 61. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Rotator cuff through preloading glenohumeral ligaments • Long head of biceps tendon • (Supporting musculature) • (Proprioception and reflexes) • (Scapulothoracic motion) US MR
  62. 62. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  63. 63. Subacromial Bursitis Normal US MR
  64. 64. ♀WH °620609 ed 110701 RA: Biceps Tendon Sheat, Subdeltoid Bursa US
  65. 65. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Through preloading glenohumeral ligaments • Long head of biceps tendon • (Supporting musculature) • (Proprioception and reflexes) • (Scapulothoracic motion) US MR
  66. 66. Rotator Cuff Components • Supraspinatus • Infraspinatus • Teres minor • Subscapularis – tendinous insertions merge with glenohumeral joint capsule and ligaments US MR
  67. 67. Rotator Cuff Lesions • Histologic abnormalities:  50% age > 40y – glycosaminoglycan infiltration – fibrocartilaginous transformation – loss of collagen fiber organisation – degenerative changes • Inflammatory infiltrates not predominant ! • Clinical and functional relevance? US MR
  68. 68. Cuff Ultrastructure • Layer 1: corocohumeral ligament superficial fibres • Layer 2: thick main cuff portion: parallel bundles • Layer 3: thick cuff portion: smaller bundles with less uniform oriëntation • Layer 4: rotator cable or transverse band, force distribution through perpendicular bundle orientation, deep fibres of coracohumeral ligament • Layer 5: capsule, random fibre orientation US MR
  69. 69. Rotator Cable (C) and Crescent (B) Cable: transverse force distribution Articular side tears at cable: greater functional impact US MR
  70. 70. Rotator Cuff Injury: Etiology • Intrinsic mechanism – Direct tendon overload – Intrinsic degeneration – Location: intratendinous, critical area • Extrinsic mechanism – Compression against surrounding structures  impingement – Subacromial impingement • Painfull arc: 60 – 120° humeral elevation • Location: tendon insertion US MR
  71. 71. Rotator Cuff Lesions • Tendinopathy-tendinosis – Calcific tendinosis • Partial thickness tear (PTT) • Full thickness tear (FTT) and complete tear (CT) • Interval tears • Subscapularis and pectoralis major tear • Postoperative repair US MR
  72. 72. Calcifying tendinosis Tendinosis - swellingSA-SD bursitis Normal US
  73. 73. Rotator Cuff Calcifications Reflective tendon bundle: stony lane US
  74. 74. Calcifying Tendinopathy 1. Silent phase 2. Mechanical phase 1. elevation of bursal floor 2. subbursal rupture 3. intrabursal rupture US MR
  75. 75. SS Calcification US MR
  76. 76. SS Calcification, Bursal Extrusion MR
  77. 77. ♀VDEO °500507 ed 110310 US MR
  78. 78. ♀VDEO °500507 ed 110310 Calciumextrusion bursa, Calcium milk at SS US MR
  79. 79. Subscapular Calcification Anterior Impingement US
  80. 80. Male WW °640416 ed 110218 Acute Shoulder Pain Started 4 Days Ago • Calcium extrusion to subbursal floor at anterior portion of subdeltoid bursa US
  81. 81. Male BM °580608 ed110318 US Calcium Milk at SADB Rotator Interval widened, Tear SSC and SS US
  82. 82. Pectoralis Major Tendon Calcification Courtesy of L. Carpentier US
  83. 83. SS Tendinosis • Hypoechogenic • Swollen • Loss of normal fibrillar pattern US
  84. 84. Cuff Tears • Partial Thicknesstears (PTT) – Bursal – Articular • Fraying, rimrent – Intrasubstantial • Full thicknesstears (FTT) – Partial width – Complete: full width • retraction, fatty atrophy US MR
  85. 85. Supraspinatus Tear Partial Thickness Articular Side Bursal Side US MR
  86. 86. Supraspinatus Tear Fraying, Bursal Side US MR Cor Intermed FS Cor T1 FS Gad Sag T1 Gad
  87. 87. Supraspinatus Tear, Insertion Area Partial Thickness, Bursal Side US MR
  88. 88. Supraspinatus Tear Partial Thickness, Bursal Side US
  89. 89. Supraspinatus Tear Intrasubstantial, delamination US MR
  90. 90. ♀ DGA °460315 US MRI Insertion Tendinosis with Delamination SS Cor T1 FS Gad Cor Intermed FS US MR
  91. 91. Supraspinatus Tear Small Full Thickness Ultrasound ArthrographyArthro-CT US MR
  92. 92. Indirect Arthro: Small Full Thickness SS Tear US MR Cor Intermed FS Cor T1 FS Gad
  93. 93. Female, LC °550426 SS Full Thickness Tear, Critical Area US MR
  94. 94. Supraspinatus Full Thickness and Full Width: Complete US MR
  95. 95. Direct Arthro-MRI Supraspinatus Tear Full Thickness, Tendon Insertion US MR
  96. 96. Female A-CH °480701 MR US Total Thickness Tear SS US
  97. 97. Female A-CH °480701 MR US Total Thickness Tear SS US
  98. 98. End Stage Naked Tub. Maius Effusion AC-joint Effusion Subdelt. Caput Longum Bic. Supraspinatus tear US
  99. 99. Grading RC Tears • FT: Dimensions Anteroposterior and lateral • CT: Goutallier – Position of retracted SS tendon relative to the acromion • Grade 1: lateral to the acromion • Grade 2: subacromial • Grade 3: medial to the acromion MR US
  100. 100. Grading Supraspinatus Muscle Atrophy: MRI and CT • Complete or Massive Supraspinatus Tear • Goutallier classification: – 0 = no intramuscular fat – 1 = some fatty streaks – 2 = fat less extensive than muscle – 3 = fat equal to muscle – 4 = fat more extensive than muscle Clin Orthop Relat Res. 1994 Jul;(304):78-83. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. US MR
  101. 101. Massive Supraspinatus Tear Supraspinatus Muscle Evaluation: CT and MRI • Fatty infiltration: – Goutallier classification: – 2 = fat less extensive than muscle • Muscle volume: – Zanetti Tangent Sign – +: muscle below tangent line Clin Orthop Relat Res. 1994 Jul;(304):78-83. Fatty muscle degeneration in cuff ruptures. Pre- and postoperative evaluation by CT scan. Goutallier D, Postel JM, Bernageau J, Lavau L, Voisin MC. US MR
  102. 102. Supraspinatus Muscle Atrophy: US grading • Structure – 0 = clearly visible muscle contours, fibers, and central tendon – 1 = partially visible structures – 2 = structures no longer visible • Echogenicity in comparison to deltoid muscle – 0 = iso- or hypoechoic – 1 = slightly more echoic – 2 = markedly more echoic • Substantial fatty atrophy = grade 2 in at least one of the evaluated US criteria Strobel et al. Fatty atrophy of the supraspinatus, accuracy of US. Radiology 2005 US
  103. 103. Massive Supraspinatus Tear Supraspinatus Muscle Evaluation: CT and MRI • Muscle volume: • Zanetti Tangent Sign – +: muscle below tangent line Invest Radiol. 1998 Mar;33(3):163-70. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Zanetti M, Gerber C, Hodler J. US MR
  104. 104. Supraspinatus M SS Muscle Mass US
  105. 105. • Fatty infiltration: Goutallier classification: – 0 = no intramuscular fat – 1 = some fatty streaks – 2 = fat less extensive than muscle – 3 = fat equal to muscle – 4 = fat more extensive than muscle • Muscle volume: Zanetti Tangent Sign – +: muscle below tangent line Invest Radiol. 1998 Mar;33(3):163-70. Quantitative assessment of the muscles of the rotator cuff with magnetic resonance imaging. Zanetti M, Gerber C, Hodler J. US MR Massive Supraspinatus Tear Supraspinatus Muscle Evaluation: CT and MRI
  106. 106. SS-IS CT grade 3 Grade 3 Fat Infiltration Positive Zanetti Tangent Sign US MR
  107. 107. ♀, DSE °520518 ed 100225, Postop SS Massive Tear, Deltoid Tear Sag T1 Cor T2 FS US MR
  108. 108. ♀, DSE °520518 ed 100225, Postop SS Massive Tear, Deltoid Tear US MR
  109. 109. Indirect Arthro Postop SS Reinsertion US MR
  110. 110. ♂, FJ °510611 ed 100526 Massive Tear SS without atrophy and IS with atrophy US
  111. 111. ♂, FJ °510611 ed 100526 Massive Tear SS without atrophy and IS with atrophy US
  112. 112. Accuracy Sens Spec Acc PPV Correlation (r) Tear Measurement Plain MRI FTT 85% 83% 83% 99% Plain MRI PTT 83% 85% 39% Plain MRI FTT> 1cm 96% 83% 83% Arthrography All lesions 96% 75% 89% 0.90 (0.46 retear) US Tear 91% 86% 89% US MR
  113. 113. Rotator Cuff Interval SSC SS Max 10 mm Transverse SS Interval US
  114. 114. Interval Lesions Supraspinatus Full Thickness Tear, Tickening Biceps CL BIC Coracohumeral Transverse Lig US
  115. 115. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Rotator cuff through preloading glenohumeral ligaments • Long head of biceps tendon • (Supporting musculature) • (Proprioception and reflexes) • (Scapulothoracic motion) US MR
  116. 116. Biceps Tendon (Sub)luxation CT –Arthrography US MR
  117. 117. Subluxation Biceps Tendon US Axial T1 FS Gad
  118. 118. Biceps Dislocation, Deep to SSC Sup to Teres Major US MR
  119. 119. ♀ DDI °651002 ed1 30314 SS Complete Tear, Biceps CL superficial to SSC Cor T1 FS Gad Cor T1 FS Gad Sag T1 Gad Sag T1 Gad US MR
  120. 120. Dynamic Constraints • Rotator cuff – Through Joint Compression – Individual components of rotator cuff – Rotator cuff through preloading glenohumeral ligaments • Long head of biceps tendon • Supporting musculature • (Proprioception and reflexes) • (Scapulothoracic motion) US
  121. 121. Tear Teres Major – Lattisimus Dorsi US
  122. 122. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  123. 123. Dysplasia, malformations Discongruent GH Joint Normal joint US MR
  124. 124. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  125. 125. AC Dislocation US Type II Type III
  126. 126. Female, DRE °940929 Traction Epiphysiolysis R Proximal Humeral Epiphysis US
  127. 127. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  128. 128. ♂DJH °550301 ed 120715 Retractile Capsulitis, SLAP VIII Cor T1 FS Gad Cor T1 FS Gad Ax T1 FS Gad Sag T1 FS GadCor Intermed FSCor Intermed FS US MR
  129. 129. ♂VDVL °621208 ed100422 US Retractile Capsulitis Axillary Examination, Endorotation deficit US
  130. 130. ♀, EMF °710314 Retractile Capsulitis, Glenohumeral Distension US”A” US
  131. 131. ♀, EMF °710314 Retractile Capsulitis, Glenohumeral Distension US”A” US
  132. 132. Static Constraints • Bony structures – Humeral and glenoid version – Surface area and articular conformity – Coracoacromial arch – (Acromioclavicular joint) • Soft tissues – Glenohumeral ligaments and capsule – Glenoid labrum – Subacromial bursa • (Intraarticular pressure) US MR
  133. 133. Coracoacromial Arch • Acromion • Coracoacromial ligament • Coracoid process Roof above supraspinatus tendon: outlet through which tendon must pass US
  134. 134. Subacromial Space Coracoacromial arch area Indirect MR-arthrography SE T1 WI US MR
  135. 135. Impingement • Subacromial • Subcoracoidal - anterior • Anterocranial • Internal US MR
  136. 136. Impingement Classification • Primary (external) impingement – anatomy / static • Subacromial impingement • Anterior - Subcoracoid impingement • Secondary (internal) impingement – biomechanics / dynamic • Internal or Posterior superior impingement (Walsh) • Anterior superior impingement (Gerber) US MR
  137. 137. Impingement • Subacromial (classical) – Elevation, abduction • Acromion <- >Tuberculum major • SA-SD bursa • Supraspinatus US MR
  138. 138. Contusion, Mechanical Osteitis Indirect MR-A SE T1 FS US MR
  139. 139. Erosions, Sclerosis OA AC Calcifications Radiography Impingement US
  140. 140. Subacromial Spur Post Acromioplasty US
  141. 141. Acromion Bigliani Types 1 flat Plain radiograpy: Scapular Y-view 2 curved 3 hooked US MR
  142. 142. Acromion Type 4 US MR
  143. 143. Type 3: increased likelihood of being associated with full-thickness cuff tear US MR
  144. 144. Os Acromiale US MR
  145. 145. Subacromial Spur Direct MR-arthrography Ref.:Magnetic Resonance Imaging in Orthopaedics and Sports medicine David W. Stoller; 2nd ed. US MR
  146. 146. Coracoacromial Ligament Thickening - Inflammation TSE T2 FS SE T1 FS Gad SE T1 FS Gad US MR
  147. 147. Acromioclavicular Joint OA, Impingement, SS lesion Indirect arthro-MR US MR
  148. 148. Impingement • Subcoracoid, anterior – Endorotation • Coracoid process <-> Tub minor • Subscapularis tendon • Interval: coracohumeral ligament, Biceps tendon US MR
  149. 149. Subcoracoidal Space US MR
  150. 150. SSC FT Tear US MR
  151. 151. Indirect Arthro SS full thickness tear, Subcoracoidal impingement US MR
  152. 152. Indirect Arthro SS full thickness tear, Anterior impingement (2) US MR
  153. 153. ♂, BH °361218 Fall on Shoulder Complete SS tear US
  154. 154. ♂, BH °361218 Fall on Shoulder Complete SS tear, Biceps CL Dislocation US
  155. 155. ♂, BH °361218 Fall on Shoulder Complete SS tear, Biceps CL Dislocation, SSC tear US
  156. 156. ♂ BE °350123 ed20100527 US Geiser Phenomenon, Complete SS and IS Tear, Biceps Disclocation deep to the SSC US
  157. 157. ♂ BE °350123 ed20100527 US Geiser Phenomenon, Complete SS and IS Tear, Biceps Disclocation deep to the SSC US
  158. 158. ♂ BE °350123 ed20100527 US Geiser Phenomenon, Complete SS and IS Tear, Biceps Disclocation deep to the SSC US
  159. 159. ♂ MH °480129 US Biceps CL Dislocation US
  160. 160. ♂ °441001 US Longitudinal split CL Biceps, tenovaginitis US
  161. 161. ♂ °441001 US CL Biceps Subluxation with Longitudinal Split and Tenovaginitis US
  162. 162. ♂AK °730403 US CR Hypertrophic Ossification SSC with Subcoracoidal Impingement US
  163. 163. ♂AK °730403 US CR Hypertrophic Ossification SSC with Subcoracoidal Impingement US
  164. 164. Impingement • Anterosuperior Impingement – Follow through phase – RC interval • Cranial glenohumeral ligament • Coracohumeral ligament – Biceps CL tendon – Subscapularis tendon • Cranial portion US MR
  165. 165. 6. Follow through: endorotation: anterior US MR
  166. 166. Secondary anterosuperior impingement • Mechanisms • Pathology on imaging – Subscapularis tears – Anterosuperior labrum tear – CL pulley lesions – Degenerative changes anterior glenoid/ humerus US MR
  167. 167. °641216 ed 120308 Anterosuperior Impingement, Normal Cuff Biceps Pulley Thickening No Capsulitis US
  168. 168. US MR
  169. 169. Coracohumeral Ligament US MR
  170. 170. Anterosuperior Impingement Type II acromion Subacromial spur formation Inflammation –Anterior: peribursal, rotator cuff interval, coracohumeral ligament US MR
  171. 171. Rotator Cuff Interval SSC SS Max 10 mm Transverse SS Interval US MR
  172. 172. Interval Lesions Supraspinatus Full Thickness Tear, Tickening Biceps CL BIC Coracohumeral Cranial GH Lig US MR
  173. 173. Bicepstendon (sub)luxation Arthro-CT US MR
  174. 174. Subluxation Biceps Tendon US MR
  175. 175. Impingement • Internal, posterior glenoid – ABduction ExoRotation • Glenoid <-> Tub Majus post • Undersurface SS post, IS ant • Labrum US MR
  176. 176. Secondary posterosuperior impingement • Anatomic landmarks – Posterosuperior humerus – Posterosuperior glenoid • Target – Infraspinatus/ posterior supraspinatus • Clinical findings – Late-cocking position (abduction-exorotation) – Instability related/overhead sporters ≤ 35 y US MR
  177. 177. 3. late cocking phase: abduction/exorotation: posterior RC US MR
  178. 178. ♀HW °701220 ed 111006 Internal impingement with SLAP II labral dissociation and SS undersurface tear US MR
  179. 179. ♂ ST °880712 ed 110314 Javelin Thrower Internal impingement MR
  180. 180. ♀ VV °800919 ed 120118 Internal Impingement, Posterior Cranial Labral Lesion MR
  181. 181. Indirect Arthro Herniation Pit US MR
  182. 182. Posterosuperior instability • Overhead-throwing sports (dominant shoulder) – Repeated abduction and external rotation – Fibrosis of posterior inferior capsule – Contact posteriorsuperior glenoid margin,labrum and greater tuberosity – Impingement of SS and IS • MRI – Cyst formation greater tuberosity – Tear posterosuperior labrum – Underface tear rotator cuff US MR
  183. 183. Paralabral Cyst US MR
  184. 184. ♂ ed 060312 Paralabral Cyst Transverse Infraspinatus View Longitudinal Infraspinatus View Infraspinatus Muscle Paralabral Cyst Spina Scapulae US MR Courtesy FYZZIO
  185. 185. ♂ ed 111214 Lipomatous Involution IS Volleyball Player Transverse Infraspinatus View Longitudinal Infraspinatus View Teres Minor MuscleSpina Scapulae Trapezius Muscle Trapezius Muscle Humeral head US MR Courtesy FYZZIO
  186. 186. Infraspinatus Denervation MR
  187. 187. Supraspinatus Denervation Nerve Compression, Idiopathic DD Parsonage Turner TSE T2 WI FS Parsonage Turner: Neuritis Brachial Plexus US MR
  188. 188. Conclusion • Conventional radiography – Scapular Y view: acromion, GH-joint – AC-joint • Ultrasound – Rotator Cuff, AC-joint, Subdeltoidal bursa • Direct arthro-MRI – Labral lesions, including SLAP: 67% accuracy – Capsule • Indirect arthro-MRI – Most complete evaluation – Labral lesions: 100% accuracy – Excluding capsule
  189. 189. Conclusion Cuff Lesions • Ultrasound – State of the art – Available, economical and accurate – Primary examination • MRI, gadolinium enhanced – Direct or Non-direct – Inconsistency of clinical and ultrasound findings – Preoperatively • Massive tears: feasibility of primary repair • Additional information: muscle and musculotendinous junction
  190. 190. References • Takayuki S, Teruhiko N, Masamitsu T, Masafumi I. Prediction of primary reparability of massive tears of the rotator cuff on preoperative magnetic resonance imaging. Journal of Shoulder and Elbow Surgery 2003;12:222-225. • Seeger LL, Gold RH, Bassett LW, Ellman H.Shoulder impingement syndrome: MR findings in 53 shoulders. American Journal Of Roentgenology 1988;150:343-347. • Schroder RJ, Bostanjoglo M, Kaab M, Herzog H, Hidajat N, Rottgen R, Maurer J, Felix R. • Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr. 2003;175:920-928. • Nakatani T, Fujita K, Iwasaki Y, Sakai H, Kurosaka M. MRI-negative rotator cuff tears. Magn Reson Imaging. 2003;21:41-45. • Schulte-Altedorneburg G, Gebhard M, Wohlgemuth WA, Fischer W, Zentner J, Wegener R, Balzer T, Bohndorf K. MR arthrography: pharmacology, efficacy and safety in clinical trials. Skeletal Radiol. 2003;32:1-12. • Motamedi AR, Urrea LH, Hancock RE, Hawkins RJ, Ho C. Accuracy of magnetic resonance imaging in determining the presence and size of recurrent rotator cuff tears. J Shoulder Elbow Surg. 2002 Jan-Feb;11(1):6-10. Related Articles, Links • Chang CY, Wang SF, Chiou HJ, Ma HL, Sun YC, Wu HD. Comparison of shoulder ultrasound and MR imaging in diagnosing full-thickness rotator cuff tears. Clin Imaging. 2002;26:50-54. • Yamakawa S, Hashizume H, Ichikawa N, Itadera E, Inoue H. Comparative studies of MRI and operative findings in rotator cuff tear. Acta Med Okayama. 2001;55:261-268. • Oh CH, Schweitzer ME, Spettell CM. Internal derangements of the shoulder: decision tree and cost-effectiveness analysis of conventional arthrography, conventional MRI, and MR arthrography. Skeletal Radiol. 1999;28:670-678. • Prickett WD, Teefey SA, Galatz LM, Calfee RP, Middleton WD, Yamaguchi K. Accuracy of ultrasound imaging of the rotator cuff in shoulders that are painful postoperatively. J Bone Joint Surg Am. 2003;85-A:1084-1089. US MR
  191. 191. References • Magnetic Resonance Imaging in Orthopaedics and Sports medicine; David W. Stoller; 2nd ed. • Internal Derangements of Joints, Emphasis on MR Imaging; Donald Resnick and Heung Sik Kang • MRI, Arthroscopy, and Surgical Anatomy of the Joints; David W. Stoller US MR

×