Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Silent error resilience 
in numerical time-stepping schemes 
Austin Benson* 
Institute for Computational and Mathematical ...
Illustrative example 2 
Crank−Nicolson Solution 
iDt 
0 0.2 0.4 0.6 0.8 1 
x 
0 
0.5 
1 
1.5 
2 
0 50 100 150 200 
−2 
10 ...
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Silent error detection in numerical time stepping schemes (SIAM PP 2014)
Upcoming SlideShare
Loading in …5
×

Silent error detection in numerical time stepping schemes (SIAM PP 2014)

386 views

Published on

Silent error detection in numerical time stepping schemes.

This is a talk from SIAM Parallel Processing 2014 in Portland, OR

Published in: Engineering
  • Be the first to comment

  • Be the first to like this

Silent error detection in numerical time stepping schemes (SIAM PP 2014)

  1. 1. Silent error resilience in numerical time-stepping schemes Austin Benson* Institute for Computational and Mathematical Engineering Stanford University Sven Schmit* (ICME) and Rob Schreiber (HP Labs) SIAM PP 2014 * work done while interning at HP Labs February 19, 2014
  2. 2. Illustrative example 2 Crank−Nicolson Solution iDt 0 0.2 0.4 0.6 0.8 1 x 0 0.5 1 1.5 2 0 50 100 150 200 −2 10 −3 10 −4 10 −5 10 −6 10 −7 10 i D i Richardson / Crank−Nicolson forward / backward Euler ut = 1 100 uxx + 0:1 (sin(2t) + cos(2x)) t 2 [0; 2]; x 2 [0; 1] u(x; 0) = x(x

×