Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
Upcoming SlideShare
×

0

Share

# Hypergraph Cuts with General Splitting Functions

Talk at PANNG mini-symposium, SIAM MDS 2020.

### Related Books

#### Free with a 30 day trial from Scribd

See all
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

• Be the first to like this

### Hypergraph Cuts with General Splitting Functions

1. 1. 1 Joint work with Nate Veldt & Jon Kleinberg (Cornell) Hypergraph Cuts with General Splitting Functions Austin R. Benson · Cornell University Pattern Analysis for Networks and Network Generalizations SIAM MDS 2020 · June 16, 2020 Slides. bit.ly/arb-PANNG-20
3. 3. Real-world systems are composed of“higher-order” interactions that we can model with hypergraphs. 3 Physical proximity • nodes are students • hyperedges are students in the same class Drug compounds • nodes are substances • hyperedges are substances combined in a drug linear-algebra discrete-mathematics math-software combinatorics category-theory logic terminology algebraic-graph-theory combinatorial-designs hypergraphs graph-theory cayley-graphs group-theory finite-groups Categorical information • nodes are tags • hyperedges are groups of tags (e.g.,for the same question on mathoverflow.com) Networks beyond pairwise interactions: structure and dynamics. Battiston et al., 2020. The why, how, and when of representations for complex systems. Torres et al., 2020.
4. 4. Real-world systems are composed of“higher-order” interactions that we can model with hypergraphs. 4 H = (V, E), edge e 2 E is a subset of V (e ⇢ V)<latexit sha1_base64="8oqd642c1xU2WvSPMjDvF/Nrfc4=">AAAHdHicfVVdb9s2FFW7rem0j6br4/bAzjaQFrJjp8iSDAhgYG3RAC2WzUlaIDIySrqSCJOURlKNXUK/ab9mD3vZ/sWed2k7i+VkIyCJurznHt7LQzIqOdOm3//jzt2PPv7k3sb9T/3PPv/iywebD78600WlYjiNC16odxHVwJmEU8MMh3elAioiDm+jyQ9u/O17UJoV8sTMShgLmkmWspgaNF1sHrVDQU0eU25f1eSQbJ0F5MWTdkAgyYC0gYRMkhdtwjShRFeRBkOKlLTP2mTLjS5NZ+0nF5utfq8/b+RmZ7DstLxlO754eO9RmBRxJUCamFOtzwf90owtVYbFHGo/rDSUNJ7QDM6xK6kAPbbznGvSQUtC0kLhIw2ZW/1VCMZRdNaIYg2NKk7VtGmNimKCI7r2/SanSffHlsmyMiDjBWVacWIK4kpJEqYgNnxGmryGTT4EksWQKhoHVGhX4KBkbp6BmXzoZoqWeSDoBGLg/Nq0mJWDcxYpqmYuheJSBxFGzlRRyUQHJTUGlNSIN4pNA53TEnSQMhPgIsbuP3GYkhdGUDXR/xW1J8BQHJxXjoOxJ1Vq4GdIaqsgebzffxxx5F31MDlkCkDWdv5xPpc5M7DmE/EKauveKx5+h+TGlPr77W0D0542GBumcU5lBr24ENu/VqCdJvX24Lvdg52DbQ2CoXQjVKroXjKTd10SXSa7EQoc1Nzv2V5r8fFDV1CKG8DVxw8zXkSUh/gbOtgQpK4UDJOCowCGKP+4SOAwVMDp9Apb4OSbIjo/GYytWzgngMYqH5+MqHTFVSDhEhMQVCY2TKlgfJZASituahvq9KrfFIlOnSpqv7NKpnEFITns9w6CWDAkRVlwlDwSmKlOXYhmkhg7lGbqQg0XYKufnuNe2x3X60k9B9xkCkYzERX8JaZkF1F0bX9887q20lEIVltRW4bTDUdgbnNGQ7IOiZaQJYcDjPBgwPOockt6O8E6w+jlG1eSK4KTQaN8NprWVvNrEue8QNsj9HQ1oLzMaX091V+O1qqeZBxYnHcXtb9tBBda4/HSPB+EC7O6ymLEMoFM4UJVLpwNI2HDhb2+IQvxGo/k5DbEcqBuUjwNpxFV5yi+MI+KqQ3fu3fHD3NVcSA5sCw3eLru7ZaGdMhJDoTGpqKcIMwPJ3hC9Hs7uzDtkKvWIc/xOqEyBhKBucT963wJkhE9L6O/oOr4hMwDdPu9AYjOFXqUFwqrw2RGCklQVIRDaohmCTjESl6tQf1vELwAnv1vEDXPZB6ldlXAa2Swfmnc7Jzt9AY4vZ92WsP95YVy3/va+9bb8gbenjf0XnnH3qkXe795v3t/en/d+3vjm43WRmfhevfOEvPIa7SN3j8/f5me</latexit><latexit sha1_base64="8oqd642c1xU2WvSPMjDvF/Nrfc4=">AAAHdHicfVVdb9s2FFW7rem0j6br4/bAzjaQFrJjp8iSDAhgYG3RAC2WzUlaIDIySrqSCJOURlKNXUK/ab9mD3vZ/sWed2k7i+VkIyCJurznHt7LQzIqOdOm3//jzt2PPv7k3sb9T/3PPv/iywebD78600WlYjiNC16odxHVwJmEU8MMh3elAioiDm+jyQ9u/O17UJoV8sTMShgLmkmWspgaNF1sHrVDQU0eU25f1eSQbJ0F5MWTdkAgyYC0gYRMkhdtwjShRFeRBkOKlLTP2mTLjS5NZ+0nF5utfq8/b+RmZ7DstLxlO754eO9RmBRxJUCamFOtzwf90owtVYbFHGo/rDSUNJ7QDM6xK6kAPbbznGvSQUtC0kLhIw2ZW/1VCMZRdNaIYg2NKk7VtGmNimKCI7r2/SanSffHlsmyMiDjBWVacWIK4kpJEqYgNnxGmryGTT4EksWQKhoHVGhX4KBkbp6BmXzoZoqWeSDoBGLg/Nq0mJWDcxYpqmYuheJSBxFGzlRRyUQHJTUGlNSIN4pNA53TEnSQMhPgIsbuP3GYkhdGUDXR/xW1J8BQHJxXjoOxJ1Vq4GdIaqsgebzffxxx5F31MDlkCkDWdv5xPpc5M7DmE/EKauveKx5+h+TGlPr77W0D0542GBumcU5lBr24ENu/VqCdJvX24Lvdg52DbQ2CoXQjVKroXjKTd10SXSa7EQoc1Nzv2V5r8fFDV1CKG8DVxw8zXkSUh/gbOtgQpK4UDJOCowCGKP+4SOAwVMDp9Apb4OSbIjo/GYytWzgngMYqH5+MqHTFVSDhEhMQVCY2TKlgfJZASituahvq9KrfFIlOnSpqv7NKpnEFITns9w6CWDAkRVlwlDwSmKlOXYhmkhg7lGbqQg0XYKufnuNe2x3X60k9B9xkCkYzERX8JaZkF1F0bX9887q20lEIVltRW4bTDUdgbnNGQ7IOiZaQJYcDjPBgwPOockt6O8E6w+jlG1eSK4KTQaN8NprWVvNrEue8QNsj9HQ1oLzMaX091V+O1qqeZBxYnHcXtb9tBBda4/HSPB+EC7O6ymLEMoFM4UJVLpwNI2HDhb2+IQvxGo/k5DbEcqBuUjwNpxFV5yi+MI+KqQ3fu3fHD3NVcSA5sCw3eLru7ZaGdMhJDoTGpqKcIMwPJ3hC9Hs7uzDtkKvWIc/xOqEyBhKBucT963wJkhE9L6O/oOr4hMwDdPu9AYjOFXqUFwqrw2RGCklQVIRDaohmCTjESl6tQf1vELwAnv1vEDXPZB6ldlXAa2Swfmnc7Jzt9AY4vZ92WsP95YVy3/va+9bb8gbenjf0XnnH3qkXe795v3t/en/d+3vjm43WRmfhevfOEvPIa7SN3j8/f5me</latexit><latexit sha1_base64="8oqd642c1xU2WvSPMjDvF/Nrfc4=">AAAHdHicfVVdb9s2FFW7rem0j6br4/bAzjaQFrJjp8iSDAhgYG3RAC2WzUlaIDIySrqSCJOURlKNXUK/ab9mD3vZ/sWed2k7i+VkIyCJurznHt7LQzIqOdOm3//jzt2PPv7k3sb9T/3PPv/iywebD78600WlYjiNC16odxHVwJmEU8MMh3elAioiDm+jyQ9u/O17UJoV8sTMShgLmkmWspgaNF1sHrVDQU0eU25f1eSQbJ0F5MWTdkAgyYC0gYRMkhdtwjShRFeRBkOKlLTP2mTLjS5NZ+0nF5utfq8/b+RmZ7DstLxlO754eO9RmBRxJUCamFOtzwf90owtVYbFHGo/rDSUNJ7QDM6xK6kAPbbznGvSQUtC0kLhIw2ZW/1VCMZRdNaIYg2NKk7VtGmNimKCI7r2/SanSffHlsmyMiDjBWVacWIK4kpJEqYgNnxGmryGTT4EksWQKhoHVGhX4KBkbp6BmXzoZoqWeSDoBGLg/Nq0mJWDcxYpqmYuheJSBxFGzlRRyUQHJTUGlNSIN4pNA53TEnSQMhPgIsbuP3GYkhdGUDXR/xW1J8BQHJxXjoOxJ1Vq4GdIaqsgebzffxxx5F31MDlkCkDWdv5xPpc5M7DmE/EKauveKx5+h+TGlPr77W0D0542GBumcU5lBr24ENu/VqCdJvX24Lvdg52DbQ2CoXQjVKroXjKTd10SXSa7EQoc1Nzv2V5r8fFDV1CKG8DVxw8zXkSUh/gbOtgQpK4UDJOCowCGKP+4SOAwVMDp9Apb4OSbIjo/GYytWzgngMYqH5+MqHTFVSDhEhMQVCY2TKlgfJZASituahvq9KrfFIlOnSpqv7NKpnEFITns9w6CWDAkRVlwlDwSmKlOXYhmkhg7lGbqQg0XYKufnuNe2x3X60k9B9xkCkYzERX8JaZkF1F0bX9887q20lEIVltRW4bTDUdgbnNGQ7IOiZaQJYcDjPBgwPOockt6O8E6w+jlG1eSK4KTQaN8NprWVvNrEue8QNsj9HQ1oLzMaX091V+O1qqeZBxYnHcXtb9tBBda4/HSPB+EC7O6ymLEMoFM4UJVLpwNI2HDhb2+IQvxGo/k5DbEcqBuUjwNpxFV5yi+MI+KqQ3fu3fHD3NVcSA5sCw3eLru7ZaGdMhJDoTGpqKcIMwPJ3hC9Hs7uzDtkKvWIc/xOqEyBhKBucT963wJkhE9L6O/oOr4hMwDdPu9AYjOFXqUFwqrw2RGCklQVIRDaohmCTjESl6tQf1vELwAnv1vEDXPZB6ldlXAa2Swfmnc7Jzt9AY4vZ92WsP95YVy3/va+9bb8gbenjf0XnnH3qkXe795v3t/en/d+3vjm43WRmfhevfOEvPIa7SN3j8/f5me</latexit><latexit sha1_base64="8oqd642c1xU2WvSPMjDvF/Nrfc4=">AAAHdHicfVVdb9s2FFW7rem0j6br4/bAzjaQFrJjp8iSDAhgYG3RAC2WzUlaIDIySrqSCJOURlKNXUK/ab9mD3vZ/sWed2k7i+VkIyCJurznHt7LQzIqOdOm3//jzt2PPv7k3sb9T/3PPv/iywebD78600WlYjiNC16odxHVwJmEU8MMh3elAioiDm+jyQ9u/O17UJoV8sTMShgLmkmWspgaNF1sHrVDQU0eU25f1eSQbJ0F5MWTdkAgyYC0gYRMkhdtwjShRFeRBkOKlLTP2mTLjS5NZ+0nF5utfq8/b+RmZ7DstLxlO754eO9RmBRxJUCamFOtzwf90owtVYbFHGo/rDSUNJ7QDM6xK6kAPbbznGvSQUtC0kLhIw2ZW/1VCMZRdNaIYg2NKk7VtGmNimKCI7r2/SanSffHlsmyMiDjBWVacWIK4kpJEqYgNnxGmryGTT4EksWQKhoHVGhX4KBkbp6BmXzoZoqWeSDoBGLg/Nq0mJWDcxYpqmYuheJSBxFGzlRRyUQHJTUGlNSIN4pNA53TEnSQMhPgIsbuP3GYkhdGUDXR/xW1J8BQHJxXjoOxJ1Vq4GdIaqsgebzffxxx5F31MDlkCkDWdv5xPpc5M7DmE/EKauveKx5+h+TGlPr77W0D0542GBumcU5lBr24ENu/VqCdJvX24Lvdg52DbQ2CoXQjVKroXjKTd10SXSa7EQoc1Nzv2V5r8fFDV1CKG8DVxw8zXkSUh/gbOtgQpK4UDJOCowCGKP+4SOAwVMDp9Apb4OSbIjo/GYytWzgngMYqH5+MqHTFVSDhEhMQVCY2TKlgfJZASituahvq9KrfFIlOnSpqv7NKpnEFITns9w6CWDAkRVlwlDwSmKlOXYhmkhg7lGbqQg0XYKufnuNe2x3X60k9B9xkCkYzERX8JaZkF1F0bX9887q20lEIVltRW4bTDUdgbnNGQ7IOiZaQJYcDjPBgwPOockt6O8E6w+jlG1eSK4KTQaN8NprWVvNrEue8QNsj9HQ1oLzMaX091V+O1qqeZBxYnHcXtb9tBBda4/HSPB+EC7O6ymLEMoFM4UJVLpwNI2HDhb2+IQvxGo/k5DbEcqBuUjwNpxFV5yi+MI+KqQ3fu3fHD3NVcSA5sCw3eLru7ZaGdMhJDoTGpqKcIMwPJ3hC9Hs7uzDtkKvWIc/xOqEyBhKBucT963wJkhE9L6O/oOr4hMwDdPu9AYjOFXqUFwqrw2RGCklQVIRDaohmCTjESl6tQf1vELwAnv1vEDXPZB6ldlXAa2Swfmnc7Jzt9AY4vZ92WsP95YVy3/va+9bb8gbenjf0XnnH3qkXe795v3t/en/d+3vjm43WRmfhevfOEvPIa7SN3j8/f5me</latexit> 1 2 3 4 5 V = {1, 2, 3, 4, 5} E = {{1, 2, 3}, {2, 4, 5}}<latexit sha1_base64="NNfjaoBWw5b5H6dRzAXbaRk4ses=">AAAHYnicfVXdbts2FFa7Lem0nybL5XbBLvAwFLJjO8mSDAhgYF2xAi2WzU5aIDQySjqyCJOSRlKNXUKPsqfZ7fYAu9+D7NByFsvJRsAWxXO+8/Gc84kMC8G16Xb/evDwvfc/2Nh89KH/0ceffPp4a/uzC52XKoLzKBe5ehMyDYJncG64EfCmUMBkKOB1OP3O2V+/BaV5no3MvICxZJOMJzxiBpeuto4uyFenhNpeQPoB2Q/IQUAOaUUo9b+vLc7WD/ZpFeBLPzgI0Eyrq63dbqe7GOTupLec7HrLcXa1vbFD4zwqJWQmEkzry163MGPLlOGRgMqnpYaCRVM2gUucZkyCHttFhhVp4UpMklzhLzNkseqvQjCOYvNGFGtYWAqmZs3VMM+naNGV7zc5TXI8tjwrSgNZVFMmpSAmJ65wJOYKIiPmpMlr+PRdkPEIEsWigEktmUmDgrt9Bmb6rj1RrEgDyaYQgRC3S/WuHFzwUDE1dynk1zoIMfJE5WUW66BgxoDKNOKN4rNAp6wAHSTcBBETkXuPHaYQuZFMTfV/Re1IMAyNi8oJMHZUJgZ+hriyCuInx90noUDeVQ+TwkQBZJVdPJzPdcoNrPmEooTKuv8VD79FUmMK/e3enoFZRxuMDbMoZdkEOlEu934tQTsF6r3eN4cn/ZM9DZKjUEPUpWxfc5O2XRJtnrVDlDOohd/+0W798KkrKEO5u/r4dCLykAmKr9TBBpDpUsEgzgUKYIBij/IYTqkCwWY32Bw33xTR5ag3tq5xTgCNLp+NhixzxVWQwTUmIFkWW5owycU8hoSVwlSW6uRm3hSJTpwqKr+1SqaxgxCfdjsnQSQ5kqIsBEoeCcxMJy5EM0mMTTMzc6EGNdjqp5f4rR2Oq/WkngF+ZAqGcxnm4jmmZOsourI/vnpZ2cxRSF5ZWVmO26VDMPc540K8DgmXkCWHAwzLENtpStfS+wnWGYbPX7mS3BCMeo3y2XBWWS1uSZxzjbYv0NPVgIkiZdXtVn95sVb1eCKAR2m7rv19Fmy0xuOleT5IF2a1y3LIJxKZaK0qF87SUFpar1d3ZCFf4gEc34dYGqomxVM6C5m6RPHRNMxnlr51/y2fpqoUQFLgk9Tg6Xp0WBjSIqMUCItMyQRBmE+neEJ0O/1DmLXIzWiRZ3h5sCwCEoK5xu/X+RIkI3pRRr+mavmELAK0u50eyNYNepjmCqvDswnJM4KiIgISQzSPwSFW8trtVf8GwQtg/3+DqEUmiyiVqwJeI731S+Pu5KLf6eH2fjrYHRwvL5RH3ufel97XXs878gbeD96Zd+5F3m/e794f3p8bf2/6m9ubO7XrwwdLzI7XGJtf/AOSv5Fm</latexit><latexit sha1_base64="NNfjaoBWw5b5H6dRzAXbaRk4ses=">AAAHYnicfVXdbts2FFa7Lem0nybL5XbBLvAwFLJjO8mSDAhgYF2xAi2WzU5aIDQySjqyCJOSRlKNXUKPsqfZ7fYAu9+D7NByFsvJRsAWxXO+8/Gc84kMC8G16Xb/evDwvfc/2Nh89KH/0ceffPp4a/uzC52XKoLzKBe5ehMyDYJncG64EfCmUMBkKOB1OP3O2V+/BaV5no3MvICxZJOMJzxiBpeuto4uyFenhNpeQPoB2Q/IQUAOaUUo9b+vLc7WD/ZpFeBLPzgI0Eyrq63dbqe7GOTupLec7HrLcXa1vbFD4zwqJWQmEkzry163MGPLlOGRgMqnpYaCRVM2gUucZkyCHttFhhVp4UpMklzhLzNkseqvQjCOYvNGFGtYWAqmZs3VMM+naNGV7zc5TXI8tjwrSgNZVFMmpSAmJ65wJOYKIiPmpMlr+PRdkPEIEsWigEktmUmDgrt9Bmb6rj1RrEgDyaYQgRC3S/WuHFzwUDE1dynk1zoIMfJE5WUW66BgxoDKNOKN4rNAp6wAHSTcBBETkXuPHaYQuZFMTfV/Re1IMAyNi8oJMHZUJgZ+hriyCuInx90noUDeVQ+TwkQBZJVdPJzPdcoNrPmEooTKuv8VD79FUmMK/e3enoFZRxuMDbMoZdkEOlEu934tQTsF6r3eN4cn/ZM9DZKjUEPUpWxfc5O2XRJtnrVDlDOohd/+0W798KkrKEO5u/r4dCLykAmKr9TBBpDpUsEgzgUKYIBij/IYTqkCwWY32Bw33xTR5ag3tq5xTgCNLp+NhixzxVWQwTUmIFkWW5owycU8hoSVwlSW6uRm3hSJTpwqKr+1SqaxgxCfdjsnQSQ5kqIsBEoeCcxMJy5EM0mMTTMzc6EGNdjqp5f4rR2Oq/WkngF+ZAqGcxnm4jmmZOsourI/vnpZ2cxRSF5ZWVmO26VDMPc540K8DgmXkCWHAwzLENtpStfS+wnWGYbPX7mS3BCMeo3y2XBWWS1uSZxzjbYv0NPVgIkiZdXtVn95sVb1eCKAR2m7rv19Fmy0xuOleT5IF2a1y3LIJxKZaK0qF87SUFpar1d3ZCFf4gEc34dYGqomxVM6C5m6RPHRNMxnlr51/y2fpqoUQFLgk9Tg6Xp0WBjSIqMUCItMyQRBmE+neEJ0O/1DmLXIzWiRZ3h5sCwCEoK5xu/X+RIkI3pRRr+mavmELAK0u50eyNYNepjmCqvDswnJM4KiIgISQzSPwSFW8trtVf8GwQtg/3+DqEUmiyiVqwJeI731S+Pu5KLf6eH2fjrYHRwvL5RH3ufel97XXs878gbeD96Zd+5F3m/e794f3p8bf2/6m9ubO7XrwwdLzI7XGJtf/AOSv5Fm</latexit><latexit sha1_base64="NNfjaoBWw5b5H6dRzAXbaRk4ses=">AAAHYnicfVXdbts2FFa7Lem0nybL5XbBLvAwFLJjO8mSDAhgYF2xAi2WzU5aIDQySjqyCJOSRlKNXUKPsqfZ7fYAu9+D7NByFsvJRsAWxXO+8/Gc84kMC8G16Xb/evDwvfc/2Nh89KH/0ceffPp4a/uzC52XKoLzKBe5ehMyDYJncG64EfCmUMBkKOB1OP3O2V+/BaV5no3MvICxZJOMJzxiBpeuto4uyFenhNpeQPoB2Q/IQUAOaUUo9b+vLc7WD/ZpFeBLPzgI0Eyrq63dbqe7GOTupLec7HrLcXa1vbFD4zwqJWQmEkzry163MGPLlOGRgMqnpYaCRVM2gUucZkyCHttFhhVp4UpMklzhLzNkseqvQjCOYvNGFGtYWAqmZs3VMM+naNGV7zc5TXI8tjwrSgNZVFMmpSAmJ65wJOYKIiPmpMlr+PRdkPEIEsWigEktmUmDgrt9Bmb6rj1RrEgDyaYQgRC3S/WuHFzwUDE1dynk1zoIMfJE5WUW66BgxoDKNOKN4rNAp6wAHSTcBBETkXuPHaYQuZFMTfV/Re1IMAyNi8oJMHZUJgZ+hriyCuInx90noUDeVQ+TwkQBZJVdPJzPdcoNrPmEooTKuv8VD79FUmMK/e3enoFZRxuMDbMoZdkEOlEu934tQTsF6r3eN4cn/ZM9DZKjUEPUpWxfc5O2XRJtnrVDlDOohd/+0W798KkrKEO5u/r4dCLykAmKr9TBBpDpUsEgzgUKYIBij/IYTqkCwWY32Bw33xTR5ag3tq5xTgCNLp+NhixzxVWQwTUmIFkWW5owycU8hoSVwlSW6uRm3hSJTpwqKr+1SqaxgxCfdjsnQSQ5kqIsBEoeCcxMJy5EM0mMTTMzc6EGNdjqp5f4rR2Oq/WkngF+ZAqGcxnm4jmmZOsourI/vnpZ2cxRSF5ZWVmO26VDMPc540K8DgmXkCWHAwzLENtpStfS+wnWGYbPX7mS3BCMeo3y2XBWWS1uSZxzjbYv0NPVgIkiZdXtVn95sVb1eCKAR2m7rv19Fmy0xuOleT5IF2a1y3LIJxKZaK0qF87SUFpar1d3ZCFf4gEc34dYGqomxVM6C5m6RPHRNMxnlr51/y2fpqoUQFLgk9Tg6Xp0WBjSIqMUCItMyQRBmE+neEJ0O/1DmLXIzWiRZ3h5sCwCEoK5xu/X+RIkI3pRRr+mavmELAK0u50eyNYNepjmCqvDswnJM4KiIgISQzSPwSFW8trtVf8GwQtg/3+DqEUmiyiVqwJeI731S+Pu5KLf6eH2fjrYHRwvL5RH3ufel97XXs878gbeD96Zd+5F3m/e794f3p8bf2/6m9ubO7XrwwdLzI7XGJtf/AOSv5Fm</latexit><latexit sha1_base64="NNfjaoBWw5b5H6dRzAXbaRk4ses=">AAAHYnicfVXdbts2FFa7Lem0nybL5XbBLvAwFLJjO8mSDAhgYF2xAi2WzU5aIDQySjqyCJOSRlKNXUKPsqfZ7fYAu9+D7NByFsvJRsAWxXO+8/Gc84kMC8G16Xb/evDwvfc/2Nh89KH/0ceffPp4a/uzC52XKoLzKBe5ehMyDYJncG64EfCmUMBkKOB1OP3O2V+/BaV5no3MvICxZJOMJzxiBpeuto4uyFenhNpeQPoB2Q/IQUAOaUUo9b+vLc7WD/ZpFeBLPzgI0Eyrq63dbqe7GOTupLec7HrLcXa1vbFD4zwqJWQmEkzry163MGPLlOGRgMqnpYaCRVM2gUucZkyCHttFhhVp4UpMklzhLzNkseqvQjCOYvNGFGtYWAqmZs3VMM+naNGV7zc5TXI8tjwrSgNZVFMmpSAmJ65wJOYKIiPmpMlr+PRdkPEIEsWigEktmUmDgrt9Bmb6rj1RrEgDyaYQgRC3S/WuHFzwUDE1dynk1zoIMfJE5WUW66BgxoDKNOKN4rNAp6wAHSTcBBETkXuPHaYQuZFMTfV/Re1IMAyNi8oJMHZUJgZ+hriyCuInx90noUDeVQ+TwkQBZJVdPJzPdcoNrPmEooTKuv8VD79FUmMK/e3enoFZRxuMDbMoZdkEOlEu934tQTsF6r3eN4cn/ZM9DZKjUEPUpWxfc5O2XRJtnrVDlDOohd/+0W798KkrKEO5u/r4dCLykAmKr9TBBpDpUsEgzgUKYIBij/IYTqkCwWY32Bw33xTR5ag3tq5xTgCNLp+NhixzxVWQwTUmIFkWW5owycU8hoSVwlSW6uRm3hSJTpwqKr+1SqaxgxCfdjsnQSQ5kqIsBEoeCcxMJy5EM0mMTTMzc6EGNdjqp5f4rR2Oq/WkngF+ZAqGcxnm4jmmZOsourI/vnpZ2cxRSF5ZWVmO26VDMPc540K8DgmXkCWHAwzLENtpStfS+wnWGYbPX7mS3BCMeo3y2XBWWS1uSZxzjbYv0NPVgIkiZdXtVn95sVb1eCKAR2m7rv19Fmy0xuOleT5IF2a1y3LIJxKZaK0qF87SUFpar1d3ZCFf4gEc34dYGqomxVM6C5m6RPHRNMxnlr51/y2fpqoUQFLgk9Tg6Xp0WBjSIqMUCItMyQRBmE+neEJ0O/1DmLXIzWiRZ3h5sCwCEoK5xu/X+RIkI3pRRr+mavmELAK0u50eyNYNepjmCqvDswnJM4KiIgISQzSPwSFW8trtVf8GwQtg/3+DqEUmiyiVqwJeI731S+Pu5KLf6eH2fjrYHRwvL5RH3ufel97XXs878gbeD96Zd+5F3m/e794f3p8bf2/6m9ubO7XrwwdLzI7XGJtf/AOSv5Fm</latexit>
5. 5. 5 1. What is a hypergraph minimum s-t cut? 2. If we know what they are, can we find them efficiently? 3. If we can find them efficiently, what can we use them for? We should have a foundation for hypergraph minimum s-t cuts,but…
6. 6. What is a hypergraph minimum s-t cut? 6 s t Should we treat the 2/2 split differently from the 1/3 split? Historically, no. [Lawler 73,Ihler+ 93] More recently, yes. [Li-Milenkovic 17] 1 3 2 4 5 6 7 8 s t There is only one way to split an edge (1/1).
8. 8. Cardinality-based splitting functions appear throughout the literature. 8 [Lawler 73; Ihler+ 93; Yin+ 17] [Hu-Moerder 85; Heuer+ 18] [Agarwal+ 06; Zhou+ 06; Benson+ 16] [Yaros- Imielinski 13] [Li-Milenkovic 18] All-or-nothing we(U) = ( 0 if U 2 {e, ;} 1 otherwise Linear penalty we(U) = min{|U|, |eU|} Quadratic penalty we(U) = |U| · |eU| Discount cut we(U) = min{|U|↵ , |eU|↵ } L-M submodular we(U) = 1 2 + 1 2 · min n 1, |U| b↵|e|c , |eU| b↵|e|c o <latexit sha1_base64="cDF560rolQNJssMRow2JiqYlGq8=">AAAJnnicfVbtc9M2GA9lY8R7g/FxX8Ta7BgkaVLogN1x1904btzRA9YGuKuyTrYfx7pItifJJEHVH8pfsz2yHUjSgj/EsvQ8v9/zroSF4NoMBu8vbV3+4ssrX11tB19/8+1331+7/sMrnZcqglGUi1y9CZkGwTMYGW4EvCkUMBkKeB1O//Dnr9+C0jzPjs2igLFkk4wnPGIGt06vbykawoRn1rCwFEw5K4QLCPldiF6uelluUp5NyM9kh76dncKt0S/kEWlUIuTVjgzwlBqYG8sTsjMilGeEWugSCrIwCw2Guh1HKCXDD5IIC2rGNTgKWdwg7RAUOrkn5RgNeIYOMUUKyJgwi00DZMVBzkZnXXIGaBCLplownZLRGaGO7KwgvSxZrNDd6BNgZ14linOzCbQK8pjrKC8zQ6LSfNqYvykTRcrO29Qc1Katetk7JLoMZR774G8CJ4pFdujsniN31r4qcytiKiDBlR12GwEqMN2GYBqUXzhLqEhEniuyNKEWgEYAX9Wx2wCAVfs/gH0eq4EiDl1UfJKaxt+gSvKywoLTa9uD/qB6yPnFsFlst5rnxen1KzdonEelhMxEaJE+GQ4KM7ZMYVYFuICWGgo0l03gBJcZk6DHtuoORzq4E5ME7Upyn0C/G6yqII5iizWUpbHz9d0wz6d4ol0QrHOa5MHY8qwoDWRRTZmUgpic+KYjMVcQGbEg67yGT991Mx6BD3yXSS2ZSbsF93Z2zfRdb6JYkXYlm0IEQnzcqq3y6oKHiqmFdyGf6a7P2URhoca6WzBjQGUa9Y3i865OWQG6m3DTjZiI/HfsdQqRG8nUVH8KtS/BMDysIifA2OMyMfAXxM4qiG8+GNwMBfKuSmB7TxRA5mz18jKzlBvYkAlFCc763xWJoENSYwr92+4uzoq+NogN8yhl2QT6US53/y1B++mld4e/7j/ce7irQXKsvxCbXPZm3KQ970SPZ70QRyGoSu7u/e36FVAfUIaj0scnoBORh0xgIxnq1Q4g06WCgzgXWAAHOCijPIZHVIFg86VuNb/Wa+B4OLY+cb4A1rL84viIZT64CjKYoQOSYTfQhEkuFjEkrBS+s3SyXK8XiU58Vbigs0qmMYMQPxr0H3YjnAIGo80EljwSmLlOPMS6k4hNMzP3UAe1stW3T7DX9sdu06nHgE2m4Gghw1w8QZdsjaKdfX74zNnMU0jurHSWo7n0CMxFwrgRb6qEjUrD4RWOyhDTaUqf0osJNhmOnhz6kCwJjodr4bPh3FktPpJ44VrbPkVJH4NqfLmPpv7zdCPq8UQAj9JeHfuLTjDRGsfL+nyQHmY1y/KITyQy0bqqPJylobS03nfnykI+w8s7vkijOXDrFLfpPGTqBIuPpmE+t/St/+0ENFWlAJJCNYcH/fv7hSEdcpwCYZEpmSCoFtApTohBf28f5h2yfDr+tjMsi4CEYGbYv16WIBnRVRiDmqqDF1gF0Bv0hyA7S+2jNFcYHf+/Ic8IFhWpLinNY/AaK35tD90HELwA7n4WpL5RKhTno4DXyHDz0ji/eLXXH6J5L+9tHzxoLpSrrR9bP7VutYat+62D1p+tF61RK9p6v/Xf5auX223SftI+bD+vRbcuNTo3WmtP+83/1uxaAQ==</latexit><latexit sha1_base64="cDF560rolQNJssMRow2JiqYlGq8=">AAAJnnicfVbtc9M2GA9lY8R7g/FxX8Ta7BgkaVLogN1x1904btzRA9YGuKuyTrYfx7pItifJJEHVH8pfsz2yHUjSgj/EsvQ8v9/zroSF4NoMBu8vbV3+4ssrX11tB19/8+1331+7/sMrnZcqglGUi1y9CZkGwTMYGW4EvCkUMBkKeB1O//Dnr9+C0jzPjs2igLFkk4wnPGIGt06vbykawoRn1rCwFEw5K4QLCPldiF6uelluUp5NyM9kh76dncKt0S/kEWlUIuTVjgzwlBqYG8sTsjMilGeEWugSCrIwCw2Guh1HKCXDD5IIC2rGNTgKWdwg7RAUOrkn5RgNeIYOMUUKyJgwi00DZMVBzkZnXXIGaBCLplownZLRGaGO7KwgvSxZrNDd6BNgZ14linOzCbQK8pjrKC8zQ6LSfNqYvykTRcrO29Qc1Katetk7JLoMZR774G8CJ4pFdujsniN31r4qcytiKiDBlR12GwEqMN2GYBqUXzhLqEhEniuyNKEWgEYAX9Wx2wCAVfs/gH0eq4EiDl1UfJKaxt+gSvKywoLTa9uD/qB6yPnFsFlst5rnxen1KzdonEelhMxEaJE+GQ4KM7ZMYVYFuICWGgo0l03gBJcZk6DHtuoORzq4E5ME7Upyn0C/G6yqII5iizWUpbHz9d0wz6d4ol0QrHOa5MHY8qwoDWRRTZmUgpic+KYjMVcQGbEg67yGT991Mx6BD3yXSS2ZSbsF93Z2zfRdb6JYkXYlm0IEQnzcqq3y6oKHiqmFdyGf6a7P2URhoca6WzBjQGUa9Y3i865OWQG6m3DTjZiI/HfsdQqRG8nUVH8KtS/BMDysIifA2OMyMfAXxM4qiG8+GNwMBfKuSmB7TxRA5mz18jKzlBvYkAlFCc763xWJoENSYwr92+4uzoq+NogN8yhl2QT6US53/y1B++mld4e/7j/ce7irQXKsvxCbXPZm3KQ970SPZ70QRyGoSu7u/e36FVAfUIaj0scnoBORh0xgIxnq1Q4g06WCgzgXWAAHOCijPIZHVIFg86VuNb/Wa+B4OLY+cb4A1rL84viIZT64CjKYoQOSYTfQhEkuFjEkrBS+s3SyXK8XiU58Vbigs0qmMYMQPxr0H3YjnAIGo80EljwSmLlOPMS6k4hNMzP3UAe1stW3T7DX9sdu06nHgE2m4Gghw1w8QZdsjaKdfX74zNnMU0jurHSWo7n0CMxFwrgRb6qEjUrD4RWOyhDTaUqf0osJNhmOnhz6kCwJjodr4bPh3FktPpJ44VrbPkVJH4NqfLmPpv7zdCPq8UQAj9JeHfuLTjDRGsfL+nyQHmY1y/KITyQy0bqqPJylobS03nfnykI+w8s7vkijOXDrFLfpPGTqBIuPpmE+t/St/+0ENFWlAJJCNYcH/fv7hSEdcpwCYZEpmSCoFtApTohBf28f5h2yfDr+tjMsi4CEYGbYv16WIBnRVRiDmqqDF1gF0Bv0hyA7S+2jNFcYHf+/Ic8IFhWpLinNY/AaK35tD90HELwA7n4WpL5RKhTno4DXyHDz0ji/eLXXH6J5L+9tHzxoLpSrrR9bP7VutYat+62D1p+tF61RK9p6v/Xf5auX223SftI+bD+vRbcuNTo3WmtP+83/1uxaAQ==</latexit><latexit sha1_base64="cDF560rolQNJssMRow2JiqYlGq8=">AAAJnnicfVbtc9M2GA9lY8R7g/FxX8Ta7BgkaVLogN1x1904btzRA9YGuKuyTrYfx7pItifJJEHVH8pfsz2yHUjSgj/EsvQ8v9/zroSF4NoMBu8vbV3+4ssrX11tB19/8+1331+7/sMrnZcqglGUi1y9CZkGwTMYGW4EvCkUMBkKeB1O//Dnr9+C0jzPjs2igLFkk4wnPGIGt06vbykawoRn1rCwFEw5K4QLCPldiF6uelluUp5NyM9kh76dncKt0S/kEWlUIuTVjgzwlBqYG8sTsjMilGeEWugSCrIwCw2Guh1HKCXDD5IIC2rGNTgKWdwg7RAUOrkn5RgNeIYOMUUKyJgwi00DZMVBzkZnXXIGaBCLplownZLRGaGO7KwgvSxZrNDd6BNgZ14linOzCbQK8pjrKC8zQ6LSfNqYvykTRcrO29Qc1Katetk7JLoMZR774G8CJ4pFdujsniN31r4qcytiKiDBlR12GwEqMN2GYBqUXzhLqEhEniuyNKEWgEYAX9Wx2wCAVfs/gH0eq4EiDl1UfJKaxt+gSvKywoLTa9uD/qB6yPnFsFlst5rnxen1KzdonEelhMxEaJE+GQ4KM7ZMYVYFuICWGgo0l03gBJcZk6DHtuoORzq4E5ME7Upyn0C/G6yqII5iizWUpbHz9d0wz6d4ol0QrHOa5MHY8qwoDWRRTZmUgpic+KYjMVcQGbEg67yGT991Mx6BD3yXSS2ZSbsF93Z2zfRdb6JYkXYlm0IEQnzcqq3y6oKHiqmFdyGf6a7P2URhoca6WzBjQGUa9Y3i865OWQG6m3DTjZiI/HfsdQqRG8nUVH8KtS/BMDysIifA2OMyMfAXxM4qiG8+GNwMBfKuSmB7TxRA5mz18jKzlBvYkAlFCc763xWJoENSYwr92+4uzoq+NogN8yhl2QT6US53/y1B++mld4e/7j/ce7irQXKsvxCbXPZm3KQ970SPZ70QRyGoSu7u/e36FVAfUIaj0scnoBORh0xgIxnq1Q4g06WCgzgXWAAHOCijPIZHVIFg86VuNb/Wa+B4OLY+cb4A1rL84viIZT64CjKYoQOSYTfQhEkuFjEkrBS+s3SyXK8XiU58Vbigs0qmMYMQPxr0H3YjnAIGo80EljwSmLlOPMS6k4hNMzP3UAe1stW3T7DX9sdu06nHgE2m4Gghw1w8QZdsjaKdfX74zNnMU0jurHSWo7n0CMxFwrgRb6qEjUrD4RWOyhDTaUqf0osJNhmOnhz6kCwJjodr4bPh3FktPpJ44VrbPkVJH4NqfLmPpv7zdCPq8UQAj9JeHfuLTjDRGsfL+nyQHmY1y/KITyQy0bqqPJylobS03nfnykI+w8s7vkijOXDrFLfpPGTqBIuPpmE+t/St/+0ENFWlAJJCNYcH/fv7hSEdcpwCYZEpmSCoFtApTohBf28f5h2yfDr+tjMsi4CEYGbYv16WIBnRVRiDmqqDF1gF0Bv0hyA7S+2jNFcYHf+/Ic8IFhWpLinNY/AaK35tD90HELwA7n4WpL5RKhTno4DXyHDz0ji/eLXXH6J5L+9tHzxoLpSrrR9bP7VutYat+62D1p+tF61RK9p6v/Xf5auX223SftI+bD+vRbcuNTo3WmtP+83/1uxaAQ==</latexit><latexit sha1_base64="cDF560rolQNJssMRow2JiqYlGq8=">AAAJnnicfVbtc9M2GA9lY8R7g/FxX8Ta7BgkaVLogN1x1904btzRA9YGuKuyTrYfx7pItifJJEHVH8pfsz2yHUjSgj/EsvQ8v9/zroSF4NoMBu8vbV3+4ssrX11tB19/8+1331+7/sMrnZcqglGUi1y9CZkGwTMYGW4EvCkUMBkKeB1O//Dnr9+C0jzPjs2igLFkk4wnPGIGt06vbykawoRn1rCwFEw5K4QLCPldiF6uelluUp5NyM9kh76dncKt0S/kEWlUIuTVjgzwlBqYG8sTsjMilGeEWugSCrIwCw2Guh1HKCXDD5IIC2rGNTgKWdwg7RAUOrkn5RgNeIYOMUUKyJgwi00DZMVBzkZnXXIGaBCLplownZLRGaGO7KwgvSxZrNDd6BNgZ14linOzCbQK8pjrKC8zQ6LSfNqYvykTRcrO29Qc1Katetk7JLoMZR774G8CJ4pFdujsniN31r4qcytiKiDBlR12GwEqMN2GYBqUXzhLqEhEniuyNKEWgEYAX9Wx2wCAVfs/gH0eq4EiDl1UfJKaxt+gSvKywoLTa9uD/qB6yPnFsFlst5rnxen1KzdonEelhMxEaJE+GQ4KM7ZMYVYFuICWGgo0l03gBJcZk6DHtuoORzq4E5ME7Upyn0C/G6yqII5iizWUpbHz9d0wz6d4ol0QrHOa5MHY8qwoDWRRTZmUgpic+KYjMVcQGbEg67yGT991Mx6BD3yXSS2ZSbsF93Z2zfRdb6JYkXYlm0IEQnzcqq3y6oKHiqmFdyGf6a7P2URhoca6WzBjQGUa9Y3i865OWQG6m3DTjZiI/HfsdQqRG8nUVH8KtS/BMDysIifA2OMyMfAXxM4qiG8+GNwMBfKuSmB7TxRA5mz18jKzlBvYkAlFCc763xWJoENSYwr92+4uzoq+NogN8yhl2QT6US53/y1B++mld4e/7j/ce7irQXKsvxCbXPZm3KQ970SPZ70QRyGoSu7u/e36FVAfUIaj0scnoBORh0xgIxnq1Q4g06WCgzgXWAAHOCijPIZHVIFg86VuNb/Wa+B4OLY+cb4A1rL84viIZT64CjKYoQOSYTfQhEkuFjEkrBS+s3SyXK8XiU58Vbigs0qmMYMQPxr0H3YjnAIGo80EljwSmLlOPMS6k4hNMzP3UAe1stW3T7DX9sdu06nHgE2m4Gghw1w8QZdsjaKdfX74zNnMU0jurHSWo7n0CMxFwrgRb6qEjUrD4RWOyhDTaUqf0osJNhmOnhz6kCwJjodr4bPh3FktPpJ44VrbPkVJH4NqfLmPpv7zdCPq8UQAj9JeHfuLTjDRGsfL+nyQHmY1y/KITyQy0bqqPJylobS03nfnykI+w8s7vkijOXDrFLfpPGTqBIuPpmE+t/St/+0ENFWlAJJCNYcH/fv7hSEdcpwCYZEpmSCoFtApTohBf28f5h2yfDr+tjMsi4CEYGbYv16WIBnRVRiDmqqDF1gF0Bv0hyA7S+2jNFcYHf+/Ic8IFhWpLinNY/AaK35tD90HELwA7n4WpL5RKhTno4DXyHDz0ji/eLXXH6J5L+9tHzxoLpSrrR9bP7VutYat+62D1p+tF61RK9p6v/Xf5auX223SftI+bD+vRbcuNTo3WmtP+83/1uxaAQ==</latexit>
9. 9. Cardinality-based splitting functions are easy to specify. 9 Cardinality-based splitting functions. minimizeS⇢V P e2E we(e S) ⌘ cutH(S) subject to s 2 S, t /2 S.<latexit sha1_base64="dNi2W8uQiA5FM9ge7UsagYj+LZU=">AAAICXicfVXdbhw1FN4UaMrw05RecuMSLQrR7mY3VUgCqhSJULVSKwKbtJXiVfDMnNlx1/ZMbU+yieUn4Gm4Q9zyFNzwLBzPbJrdJOCLGfv4nO/z+bPjUnBj+/2/l+588OFHd5fvfRx98ulnn99fefDFK1NUOoGjpBCFfhMzA4IrOLLcCnhTamAyFvA6nvwQ9l+fgja8UIf2vISRZGPFM54wi6KTlX9oDGOuHLyrasm6j2YSpjU7904IlFiYWie54pJfgD9xQ0JNFRuw5JUnX4eFPHFAKFfkR0/o6dkJrOEyYSUZfkMogvNT0qAklUUAKpnNEybcM+/XggqNHFWFlkxkhbIzXeR4C4kltiA+8JiaYdih3xNUUYUNq15EQaWz4zbzK2dOVlb7vX49yM3JYDZZbc3GwcmDuw9pWiSVBGUTwYw5HvRLO0J4yxMBSFAZKFkyYWM4xqliEszI1YnwpI2SlGSFJrUXtTSaN3l/zDmRZXElmJ4uSuOimOCO8VG0yGmznZHjqqwsqKShzCoRYhTyS1KuMWTinCzyWj656CieQKZZ0mHShAR0Sh7O2bGTi+5YszLvSDaBBIS4EjWnCuaCx5rp8+BCcWY6MSKPdVGp1HRKZi1oZdDeaj7tmJyVYDoZtx1MchLWabApRWEl0xPzX6g9CZbhZh05AdYdVpmFXyD1TkP6aKf/KBbIO69hcxhrAOVd/Qs6Zzm3cE0nFhV4F75zGlGb5NaW5ruNDSy4nrGIDdMkZ2oMvaSQG+8qMKGSzMbg263dzd0NA5JjP8VYX7J7xm3eDU50uerG2HWga73H26vNL6IhoAy7MsQnomNRxExQXNJgtgfKVBr20kJgAexhTyZFCk+oBsGml7YFHn6xiI4PByMXEhcKYCHLB4dDpkJwNSg4Qwckw3agGZNcnKeQsUpY76jJLueLRWKyUBU+as+TGcwgpE/6vd1OgleAxWgzgSWPBHZqsgCx6CRiU2WnAWqvMXZm/Rh7bWvkrzu1D9hkGobnMi7EU3TJNSjGu59evvBOBQrJvZPecTwuHYK9TRkF6XWTeGYy4wgGQ7y08JKsQkpvJ7jOMHz6MoTkkuBwsBA+F0+9M+KKJCg31u65b245Jsqc+auj/vr8WtTTsQCe5N0m9rftYKINXi+L94MMMPNZlkM+lshEm6oKcI7G0tFG7m+UhXyB70R6m8Vswy9SrNNpzPQxFh/N42Lq6Gn4tiOa60oAyYGPc4u36/ZWaUmbHOZAWGIrJgiaRXSCN0S/t7kF0za5HG2yj28cUwmQGOwZ9m/QJUhGTB3GqKFqR4TUAN1+bwCyfWk9zAuN0eFqTApFsKiIgMwSw1MIFnN+rQ78exB8AB7/L4iuPalRfIgCPiOD64/Gzcmrzd4Aj/fz5urezuxBudf6svVVa601aG239lrPWgeto1aytL/0dsks2eXfln9f/mP5z0b1ztLM5mFrYSz/9S/5ANcF</latexit><latexit sha1_base64="dNi2W8uQiA5FM9ge7UsagYj+LZU=">AAAICXicfVXdbhw1FN4UaMrw05RecuMSLQrR7mY3VUgCqhSJULVSKwKbtJXiVfDMnNlx1/ZMbU+yieUn4Gm4Q9zyFNzwLBzPbJrdJOCLGfv4nO/z+bPjUnBj+/2/l+588OFHd5fvfRx98ulnn99fefDFK1NUOoGjpBCFfhMzA4IrOLLcCnhTamAyFvA6nvwQ9l+fgja8UIf2vISRZGPFM54wi6KTlX9oDGOuHLyrasm6j2YSpjU7904IlFiYWie54pJfgD9xQ0JNFRuw5JUnX4eFPHFAKFfkR0/o6dkJrOEyYSUZfkMogvNT0qAklUUAKpnNEybcM+/XggqNHFWFlkxkhbIzXeR4C4kltiA+8JiaYdih3xNUUYUNq15EQaWz4zbzK2dOVlb7vX49yM3JYDZZbc3GwcmDuw9pWiSVBGUTwYw5HvRLO0J4yxMBSFAZKFkyYWM4xqliEszI1YnwpI2SlGSFJrUXtTSaN3l/zDmRZXElmJ4uSuOimOCO8VG0yGmznZHjqqwsqKShzCoRYhTyS1KuMWTinCzyWj656CieQKZZ0mHShAR0Sh7O2bGTi+5YszLvSDaBBIS4EjWnCuaCx5rp8+BCcWY6MSKPdVGp1HRKZi1oZdDeaj7tmJyVYDoZtx1MchLWabApRWEl0xPzX6g9CZbhZh05AdYdVpmFXyD1TkP6aKf/KBbIO69hcxhrAOVd/Qs6Zzm3cE0nFhV4F75zGlGb5NaW5ruNDSy4nrGIDdMkZ2oMvaSQG+8qMKGSzMbg263dzd0NA5JjP8VYX7J7xm3eDU50uerG2HWga73H26vNL6IhoAy7MsQnomNRxExQXNJgtgfKVBr20kJgAexhTyZFCk+oBsGml7YFHn6xiI4PByMXEhcKYCHLB4dDpkJwNSg4Qwckw3agGZNcnKeQsUpY76jJLueLRWKyUBU+as+TGcwgpE/6vd1OgleAxWgzgSWPBHZqsgCx6CRiU2WnAWqvMXZm/Rh7bWvkrzu1D9hkGobnMi7EU3TJNSjGu59evvBOBQrJvZPecTwuHYK9TRkF6XWTeGYy4wgGQ7y08JKsQkpvJ7jOMHz6MoTkkuBwsBA+F0+9M+KKJCg31u65b245Jsqc+auj/vr8WtTTsQCe5N0m9rftYKINXi+L94MMMPNZlkM+lshEm6oKcI7G0tFG7m+UhXyB70R6m8Vswy9SrNNpzPQxFh/N42Lq6Gn4tiOa60oAyYGPc4u36/ZWaUmbHOZAWGIrJgiaRXSCN0S/t7kF0za5HG2yj28cUwmQGOwZ9m/QJUhGTB3GqKFqR4TUAN1+bwCyfWk9zAuN0eFqTApFsKiIgMwSw1MIFnN+rQ78exB8AB7/L4iuPalRfIgCPiOD64/Gzcmrzd4Aj/fz5urezuxBudf6svVVa601aG239lrPWgeto1aytL/0dsks2eXfln9f/mP5z0b1ztLM5mFrYSz/9S/5ANcF</latexit><latexit sha1_base64="dNi2W8uQiA5FM9ge7UsagYj+LZU=">AAAICXicfVXdbhw1FN4UaMrw05RecuMSLQrR7mY3VUgCqhSJULVSKwKbtJXiVfDMnNlx1/ZMbU+yieUn4Gm4Q9zyFNzwLBzPbJrdJOCLGfv4nO/z+bPjUnBj+/2/l+588OFHd5fvfRx98ulnn99fefDFK1NUOoGjpBCFfhMzA4IrOLLcCnhTamAyFvA6nvwQ9l+fgja8UIf2vISRZGPFM54wi6KTlX9oDGOuHLyrasm6j2YSpjU7904IlFiYWie54pJfgD9xQ0JNFRuw5JUnX4eFPHFAKFfkR0/o6dkJrOEyYSUZfkMogvNT0qAklUUAKpnNEybcM+/XggqNHFWFlkxkhbIzXeR4C4kltiA+8JiaYdih3xNUUYUNq15EQaWz4zbzK2dOVlb7vX49yM3JYDZZbc3GwcmDuw9pWiSVBGUTwYw5HvRLO0J4yxMBSFAZKFkyYWM4xqliEszI1YnwpI2SlGSFJrUXtTSaN3l/zDmRZXElmJ4uSuOimOCO8VG0yGmznZHjqqwsqKShzCoRYhTyS1KuMWTinCzyWj656CieQKZZ0mHShAR0Sh7O2bGTi+5YszLvSDaBBIS4EjWnCuaCx5rp8+BCcWY6MSKPdVGp1HRKZi1oZdDeaj7tmJyVYDoZtx1MchLWabApRWEl0xPzX6g9CZbhZh05AdYdVpmFXyD1TkP6aKf/KBbIO69hcxhrAOVd/Qs6Zzm3cE0nFhV4F75zGlGb5NaW5ruNDSy4nrGIDdMkZ2oMvaSQG+8qMKGSzMbg263dzd0NA5JjP8VYX7J7xm3eDU50uerG2HWga73H26vNL6IhoAy7MsQnomNRxExQXNJgtgfKVBr20kJgAexhTyZFCk+oBsGml7YFHn6xiI4PByMXEhcKYCHLB4dDpkJwNSg4Qwckw3agGZNcnKeQsUpY76jJLueLRWKyUBU+as+TGcwgpE/6vd1OgleAxWgzgSWPBHZqsgCx6CRiU2WnAWqvMXZm/Rh7bWvkrzu1D9hkGobnMi7EU3TJNSjGu59evvBOBQrJvZPecTwuHYK9TRkF6XWTeGYy4wgGQ7y08JKsQkpvJ7jOMHz6MoTkkuBwsBA+F0+9M+KKJCg31u65b245Jsqc+auj/vr8WtTTsQCe5N0m9rftYKINXi+L94MMMPNZlkM+lshEm6oKcI7G0tFG7m+UhXyB70R6m8Vswy9SrNNpzPQxFh/N42Lq6Gn4tiOa60oAyYGPc4u36/ZWaUmbHOZAWGIrJgiaRXSCN0S/t7kF0za5HG2yj28cUwmQGOwZ9m/QJUhGTB3GqKFqR4TUAN1+bwCyfWk9zAuN0eFqTApFsKiIgMwSw1MIFnN+rQ78exB8AB7/L4iuPalRfIgCPiOD64/Gzcmrzd4Aj/fz5urezuxBudf6svVVa601aG239lrPWgeto1aytL/0dsks2eXfln9f/mP5z0b1ztLM5mFrYSz/9S/5ANcF</latexit><latexit sha1_base64="dNi2W8uQiA5FM9ge7UsagYj+LZU=">AAAICXicfVXdbhw1FN4UaMrw05RecuMSLQrR7mY3VUgCqhSJULVSKwKbtJXiVfDMnNlx1/ZMbU+yieUn4Gm4Q9zyFNzwLBzPbJrdJOCLGfv4nO/z+bPjUnBj+/2/l+588OFHd5fvfRx98ulnn99fefDFK1NUOoGjpBCFfhMzA4IrOLLcCnhTamAyFvA6nvwQ9l+fgja8UIf2vISRZGPFM54wi6KTlX9oDGOuHLyrasm6j2YSpjU7904IlFiYWie54pJfgD9xQ0JNFRuw5JUnX4eFPHFAKFfkR0/o6dkJrOEyYSUZfkMogvNT0qAklUUAKpnNEybcM+/XggqNHFWFlkxkhbIzXeR4C4kltiA+8JiaYdih3xNUUYUNq15EQaWz4zbzK2dOVlb7vX49yM3JYDZZbc3GwcmDuw9pWiSVBGUTwYw5HvRLO0J4yxMBSFAZKFkyYWM4xqliEszI1YnwpI2SlGSFJrUXtTSaN3l/zDmRZXElmJ4uSuOimOCO8VG0yGmznZHjqqwsqKShzCoRYhTyS1KuMWTinCzyWj656CieQKZZ0mHShAR0Sh7O2bGTi+5YszLvSDaBBIS4EjWnCuaCx5rp8+BCcWY6MSKPdVGp1HRKZi1oZdDeaj7tmJyVYDoZtx1MchLWabApRWEl0xPzX6g9CZbhZh05AdYdVpmFXyD1TkP6aKf/KBbIO69hcxhrAOVd/Qs6Zzm3cE0nFhV4F75zGlGb5NaW5ruNDSy4nrGIDdMkZ2oMvaSQG+8qMKGSzMbg263dzd0NA5JjP8VYX7J7xm3eDU50uerG2HWga73H26vNL6IhoAy7MsQnomNRxExQXNJgtgfKVBr20kJgAexhTyZFCk+oBsGml7YFHn6xiI4PByMXEhcKYCHLB4dDpkJwNSg4Qwckw3agGZNcnKeQsUpY76jJLueLRWKyUBU+as+TGcwgpE/6vd1OgleAxWgzgSWPBHZqsgCx6CRiU2WnAWqvMXZm/Rh7bWvkrzu1D9hkGobnMi7EU3TJNSjGu59evvBOBQrJvZPecTwuHYK9TRkF6XWTeGYy4wgGQ7y08JKsQkpvJ7jOMHz6MoTkkuBwsBA+F0+9M+KKJCg31u65b245Jsqc+auj/vr8WtTTsQCe5N0m9rftYKINXi+L94MMMPNZlkM+lshEm6oKcI7G0tFG7m+UhXyB70R6m8Vswy9SrNNpzPQxFh/N42Lq6Gn4tiOa60oAyYGPc4u36/ZWaUmbHOZAWGIrJgiaRXSCN0S/t7kF0za5HG2yj28cUwmQGOwZ9m/QJUhGTB3GqKFqR4TUAN1+bwCyfWk9zAuN0eFqTApFsKiIgMwSw1MIFnN+rQ78exB8AB7/L4iuPalRfIgCPiOD64/Gzcmrzd4Aj/fz5urezuxBudf6svVVa601aG239lrPWgeto1aytL/0dsks2eXfln9f/mP5z0b1ztLM5mFrYSz/9S/5ANcF</latexit> s t One extra scaling DOF, so set w1 = 1. Specify w2, ... , wbr/2c.<latexit sha1_base64="SMjjx0KffHfUKRIVd6aJj9NDt0M=">AAAHhXicfVXdbts2FFa7re60v3S93A27xMBQyD9ylyYZEMzAgmAFWiSbnbZYZGSUdGQRpkSNpGq5hN5tr7EX2O32CDu0ncVysvFCIg/P9308h4dkWHCmdL//x737H3z40YPWw4/dTz797PMvdh59+VqJUkZwEQku5NuQKuAshwvNNIe3hQSahRzehLMf7PybdyAVE/lYLwqYZHSas4RFVKPpaueXsxwIVFpSoiKKLFNycnbqESWIAk325lc+OSb+XpeMCohYsrCmgUcCHgutPDK/MgFPuBCSSNIjAxLI5aje617t7Pa7/WUjtzv+urPrrNv51aMHj4NYRGUGuY44VerS7xd6YqjULOJQu0GpoKDRjE7hErs5zUBNzDIJNWmjJSYJLiQRuSZLq7sJQR5JFw0Wo2lYciqrpjUUYoYzqnbdpqZODieG5UWpIY9WkknJiRbE5pbETEKk+YI0dTWbvfdyFkEiaeTRTGVUp17B7Do9PXvfmUpapF5GZxAB5zem1aosnLNQUrmwIYi58kJknkpR5rHyCqo1yFwhXktWeSqlBSgvYdrDDY3sOLaYggudUTlT/8XazUBTnFxmjoM24zLR8DPEtZEQPznsPwk56m566BSmEiCvzfJnfeYp07DlE/ISamO/Gx5um6RaF+q7Xk9D1VUauaGKUppPoRuJrPdbCcoWqer5z/ePBkc9BRnDWg6xdLPOnOm0Y4PosLwTYsWDXPo9O9hd/dzAJpTiibD5cYMpFyHlAQ4DCxtCrkoJw1hwLIAhnodIxHAcSOC0usYKXHyziC7H/sTYjbMF0Njl8/GI5ja5EnKYYwAZzWMTJDRjfBFDQkuuaxOo5LrfLBKV2Kqo3fammD2SEB/3u0delDEUxbLgWPIooCuVWIpmkMgd5LqyVMMV2Kinl3jW9if1dlAngIdMwmiRhYKfYkhmxaJqc/bqZW1yK5Gx2mS1YbjcYAT6Lmc0xNuQcA1Za1jAqAxxO3Vpt/RugW2F0ekrm5JrgbHfSJ8Jq9oofiNinVdo8wI9bQ4oL1Ja3yz11xdbWY+nHFiUdla5v2sGN1rh9dK8HzJLs7nL2YhNM1QKVlVl6UwQZiZY2etbZZG9xDs6vguxnqibEk+DKqTyEosvSENRmeCd/bbdIJUlB5ICm6Yab9eD/UKTNhmnQGikS8oJwtxghjdEvzvYh6pNrlubnOD7QvMISAh6jufX+hIUI2qZRncl1XYJWRJ0+l0fsvY1epQKidmxT4bICRYV4ZBoolgMFrER165f/0uCD8Cz/yWRy0iWLLXNAj4j/vajcbvzetD1cXk/DXaHh+sH5aHzlfO1843jOwfO0PnROXcunMj53fnT+cv5u9VqdVrftp6vXO/fW2MeO43W+v4f50qgzw==</latexit><latexit sha1_base64="SMjjx0KffHfUKRIVd6aJj9NDt0M=">AAAHhXicfVXdbts2FFa7re60v3S93A27xMBQyD9ylyYZEMzAgmAFWiSbnbZYZGSUdGQRpkSNpGq5hN5tr7EX2O32CDu0ncVysvFCIg/P9308h4dkWHCmdL//x737H3z40YPWw4/dTz797PMvdh59+VqJUkZwEQku5NuQKuAshwvNNIe3hQSahRzehLMf7PybdyAVE/lYLwqYZHSas4RFVKPpaueXsxwIVFpSoiKKLFNycnbqESWIAk325lc+OSb+XpeMCohYsrCmgUcCHgutPDK/MgFPuBCSSNIjAxLI5aje617t7Pa7/WUjtzv+urPrrNv51aMHj4NYRGUGuY44VerS7xd6YqjULOJQu0GpoKDRjE7hErs5zUBNzDIJNWmjJSYJLiQRuSZLq7sJQR5JFw0Wo2lYciqrpjUUYoYzqnbdpqZODieG5UWpIY9WkknJiRbE5pbETEKk+YI0dTWbvfdyFkEiaeTRTGVUp17B7Do9PXvfmUpapF5GZxAB5zem1aosnLNQUrmwIYi58kJknkpR5rHyCqo1yFwhXktWeSqlBSgvYdrDDY3sOLaYggudUTlT/8XazUBTnFxmjoM24zLR8DPEtZEQPznsPwk56m566BSmEiCvzfJnfeYp07DlE/ISamO/Gx5um6RaF+q7Xk9D1VUauaGKUppPoRuJrPdbCcoWqer5z/ePBkc9BRnDWg6xdLPOnOm0Y4PosLwTYsWDXPo9O9hd/dzAJpTiibD5cYMpFyHlAQ4DCxtCrkoJw1hwLIAhnodIxHAcSOC0usYKXHyziC7H/sTYjbMF0Njl8/GI5ja5EnKYYwAZzWMTJDRjfBFDQkuuaxOo5LrfLBKV2Kqo3fammD2SEB/3u0delDEUxbLgWPIooCuVWIpmkMgd5LqyVMMV2Kinl3jW9if1dlAngIdMwmiRhYKfYkhmxaJqc/bqZW1yK5Gx2mS1YbjcYAT6Lmc0xNuQcA1Za1jAqAxxO3Vpt/RugW2F0ekrm5JrgbHfSJ8Jq9oofiNinVdo8wI9bQ4oL1Ja3yz11xdbWY+nHFiUdla5v2sGN1rh9dK8HzJLs7nL2YhNM1QKVlVl6UwQZiZY2etbZZG9xDs6vguxnqibEk+DKqTyEosvSENRmeCd/bbdIJUlB5ICm6Yab9eD/UKTNhmnQGikS8oJwtxghjdEvzvYh6pNrlubnOD7QvMISAh6jufX+hIUI2qZRncl1XYJWRJ0+l0fsvY1epQKidmxT4bICRYV4ZBoolgMFrER165f/0uCD8Cz/yWRy0iWLLXNAj4j/vajcbvzetD1cXk/DXaHh+sH5aHzlfO1843jOwfO0PnROXcunMj53fnT+cv5u9VqdVrftp6vXO/fW2MeO43W+v4f50qgzw==</latexit><latexit sha1_base64="SMjjx0KffHfUKRIVd6aJj9NDt0M=">AAAHhXicfVXdbts2FFa7re60v3S93A27xMBQyD9ylyYZEMzAgmAFWiSbnbZYZGSUdGQRpkSNpGq5hN5tr7EX2O32CDu0ncVysvFCIg/P9308h4dkWHCmdL//x737H3z40YPWw4/dTz797PMvdh59+VqJUkZwEQku5NuQKuAshwvNNIe3hQSahRzehLMf7PybdyAVE/lYLwqYZHSas4RFVKPpaueXsxwIVFpSoiKKLFNycnbqESWIAk325lc+OSb+XpeMCohYsrCmgUcCHgutPDK/MgFPuBCSSNIjAxLI5aje617t7Pa7/WUjtzv+urPrrNv51aMHj4NYRGUGuY44VerS7xd6YqjULOJQu0GpoKDRjE7hErs5zUBNzDIJNWmjJSYJLiQRuSZLq7sJQR5JFw0Wo2lYciqrpjUUYoYzqnbdpqZODieG5UWpIY9WkknJiRbE5pbETEKk+YI0dTWbvfdyFkEiaeTRTGVUp17B7Do9PXvfmUpapF5GZxAB5zem1aosnLNQUrmwIYi58kJknkpR5rHyCqo1yFwhXktWeSqlBSgvYdrDDY3sOLaYggudUTlT/8XazUBTnFxmjoM24zLR8DPEtZEQPznsPwk56m566BSmEiCvzfJnfeYp07DlE/ISamO/Gx5um6RaF+q7Xk9D1VUauaGKUppPoRuJrPdbCcoWqer5z/ePBkc9BRnDWg6xdLPOnOm0Y4PosLwTYsWDXPo9O9hd/dzAJpTiibD5cYMpFyHlAQ4DCxtCrkoJw1hwLIAhnodIxHAcSOC0usYKXHyziC7H/sTYjbMF0Njl8/GI5ja5EnKYYwAZzWMTJDRjfBFDQkuuaxOo5LrfLBKV2Kqo3fammD2SEB/3u0delDEUxbLgWPIooCuVWIpmkMgd5LqyVMMV2Kinl3jW9if1dlAngIdMwmiRhYKfYkhmxaJqc/bqZW1yK5Gx2mS1YbjcYAT6Lmc0xNuQcA1Za1jAqAxxO3Vpt/RugW2F0ekrm5JrgbHfSJ8Jq9oofiNinVdo8wI9bQ4oL1Ja3yz11xdbWY+nHFiUdla5v2sGN1rh9dK8HzJLs7nL2YhNM1QKVlVl6UwQZiZY2etbZZG9xDs6vguxnqibEk+DKqTyEosvSENRmeCd/bbdIJUlB5ICm6Yab9eD/UKTNhmnQGikS8oJwtxghjdEvzvYh6pNrlubnOD7QvMISAh6jufX+hIUI2qZRncl1XYJWRJ0+l0fsvY1epQKidmxT4bICRYV4ZBoolgMFrER165f/0uCD8Cz/yWRy0iWLLXNAj4j/vajcbvzetD1cXk/DXaHh+sH5aHzlfO1843jOwfO0PnROXcunMj53fnT+cv5u9VqdVrftp6vXO/fW2MeO43W+v4f50qgzw==</latexit><latexit sha1_base64="SMjjx0KffHfUKRIVd6aJj9NDt0M=">AAAHhXicfVXdbts2FFa7re60v3S93A27xMBQyD9ylyYZEMzAgmAFWiSbnbZYZGSUdGQRpkSNpGq5hN5tr7EX2O32CDu0ncVysvFCIg/P9308h4dkWHCmdL//x737H3z40YPWw4/dTz797PMvdh59+VqJUkZwEQku5NuQKuAshwvNNIe3hQSahRzehLMf7PybdyAVE/lYLwqYZHSas4RFVKPpaueXsxwIVFpSoiKKLFNycnbqESWIAk325lc+OSb+XpeMCohYsrCmgUcCHgutPDK/MgFPuBCSSNIjAxLI5aje617t7Pa7/WUjtzv+urPrrNv51aMHj4NYRGUGuY44VerS7xd6YqjULOJQu0GpoKDRjE7hErs5zUBNzDIJNWmjJSYJLiQRuSZLq7sJQR5JFw0Wo2lYciqrpjUUYoYzqnbdpqZODieG5UWpIY9WkknJiRbE5pbETEKk+YI0dTWbvfdyFkEiaeTRTGVUp17B7Do9PXvfmUpapF5GZxAB5zem1aosnLNQUrmwIYi58kJknkpR5rHyCqo1yFwhXktWeSqlBSgvYdrDDY3sOLaYggudUTlT/8XazUBTnFxmjoM24zLR8DPEtZEQPznsPwk56m566BSmEiCvzfJnfeYp07DlE/ISamO/Gx5um6RaF+q7Xk9D1VUauaGKUppPoRuJrPdbCcoWqer5z/ePBkc9BRnDWg6xdLPOnOm0Y4PosLwTYsWDXPo9O9hd/dzAJpTiibD5cYMpFyHlAQ4DCxtCrkoJw1hwLIAhnodIxHAcSOC0usYKXHyziC7H/sTYjbMF0Njl8/GI5ja5EnKYYwAZzWMTJDRjfBFDQkuuaxOo5LrfLBKV2Kqo3fammD2SEB/3u0delDEUxbLgWPIooCuVWIpmkMgd5LqyVMMV2Kinl3jW9if1dlAngIdMwmiRhYKfYkhmxaJqc/bqZW1yK5Gx2mS1YbjcYAT6Lmc0xNuQcA1Za1jAqAxxO3Vpt/RugW2F0ekrm5JrgbHfSJ8Jq9oofiNinVdo8wI9bQ4oL1Ja3yz11xdbWY+nHFiUdla5v2sGN1rh9dK8HzJLs7nL2YhNM1QKVlVl6UwQZiZY2etbZZG9xDs6vguxnqibEk+DKqTyEosvSENRmeCd/bbdIJUlB5ICm6Yab9eD/UKTNhmnQGikS8oJwtxghjdEvzvYh6pNrlubnOD7QvMISAh6jufX+hIUI2qZRncl1XYJWRJ0+l0fsvY1epQKidmxT4bICRYV4ZBoolgMFrER165f/0uCD8Cz/yWRy0iWLLXNAj4j/vajcbvzetD1cXk/DXaHh+sH5aHzlfO1843jOwfO0PnROXcunMj53fnT+cv5u9VqdVrftp6vXO/fW2MeO43W+v4f50qgzw==</latexit> Non-negativity we(U) 0 for all U ⇢ e. Non-split ignoring we(e) = we(;) = 0. C-B we(U) = f (min(|U|, |Ue|)).<latexit sha1_base64="xTBt0b7gexFjuM2uz7TfXLpxIE8=">AAAIUHicfVVfb9s2EJe7rcm0P23Wx72wSz0kge3YKbIkAwIEa1GsQLtlc9IWCI2Mkk4SYZJSSSqxS+gT7NPsdfsWe9s32dt2tJ3FdrLqQaKOd7+7+/GOF5WCG9vt/tW488GHH91dWf04/OTTzz6/d3/ti1emqHQMp3EhCv0mYgYEV3BquRXwptTAZCTgdTR84vdfX4A2vFAndlzCQLJM8ZTHzKLofK3xiEaQceWY4JnaqkNqYWTdD4VqK8hQ6YLbcU2+prkpWQyu29nZjWVN6MXlOWycbhKawVvSJVMzkhaaMCHIo1NCTRUZsAQedVCdzgEbTMwSdFdorjIEJ8voM3jYJIezJQVZ2jHieVG3cw34pP3d+8I7JOkGlVxtUIE0WIJxab9okWtBxOKhEczkBGa7m5udkIJKrlg5v7/e7XQnD7m56M0W68HsOT5fu/uAJkVcSVA2Rmhz1uuWduCYtjwWgDRXBjDiIcvgDJeKSTADNznPmjRRkky4TAtlyUQazpsgjmbjBRRnWVQJpkeL0qgohrhj6jBc9GnT/YHjqqwsqHjqMq0EsQXxZUISriG2YkwW/Vo+fNdSPIZUs7jFpJHM5q2S+zhbdviunWlW5i3JhhCDENeiaVTeXPBIMz32KRSXpuXJz3RRqcS0SmYtaGXQ3mo+apmclWBaKbetmInY/yfephSFlUwPzf+hdiRYhpsT5gRYd1KlFn6GpHYakof73YeRQL/zGjaHTAOo2k0+Xucy5xaWdCJRQe38e04jbJLc2tJ8u72NNdkxFrFhFOdMZdCJC7n9tgLj+81s977ZPdg52DYgORZahA0m25fc5m2fRJurdoTNC3qi93hvffoJqSeUYXN7fkKaiSJiguIv9WZHoEyl4SgpBBbAEbZ2XCRwSDUINrqyLTD4xSI6O+kNnD84XwALp3x80mfKk6tBwSUmIBn2Ak2Z5GKcQMoqYWtHTXq1XiwSk/qqqMPmvDODJwjJYbdz0IqxHy2yzQSWPDqwI5N6iMUkEZsqO/JQR1NjZ7bOsNd2B/VyUk8Bm0xDfyyjQjzDlNwUxdTux5cvaqe8C8lrJ2vHMVzaB3ubMgqSZZNoZjLz4Q36eLPhXVv5I73dwbKH/rOXnpIrBye9BfpcNKqdEddOvPLU2j1HTc8BE2XO6utQf3m+xHqSCeBx3p5yf9sOHrTB62XxfpAeZv6UZZ9nEj3RaVV5OEcj6ehUXt8oC/kCx01ym8Vso150sUVHEdNnWHw0j4qRoxf+3QxprisBJAee5RZv173d0pImOcmBsNhWTBA0C+kQbwh/zcOoSa6eJnmKo5KpGEgE9hL71+sSdEbMhMZw6qoZ4mjxAO1upweyeWXdzwuN7OA0IoUiWFREQGqJ4Ql4i7m81nv1fyA4AB6/F0RPMpmg1J4FHCO95aFxc/Fqp9PD8H7aWT/anw2U1eDL4KtgI+gFe8FR8H1wHJwGcePXxm+N3xt/rPy58vfKP6uNqeqd2Td4ECw8q+G/RnbpAg==</latexit><latexit sha1_base64="xTBt0b7gexFjuM2uz7TfXLpxIE8=">AAAIUHicfVVfb9s2EJe7rcm0P23Wx72wSz0kge3YKbIkAwIEa1GsQLtlc9IWCI2Mkk4SYZJSSSqxS+gT7NPsdfsWe9s32dt2tJ3FdrLqQaKOd7+7+/GOF5WCG9vt/tW488GHH91dWf04/OTTzz6/d3/ti1emqHQMp3EhCv0mYgYEV3BquRXwptTAZCTgdTR84vdfX4A2vFAndlzCQLJM8ZTHzKLofK3xiEaQceWY4JnaqkNqYWTdD4VqK8hQ6YLbcU2+prkpWQyu29nZjWVN6MXlOWycbhKawVvSJVMzkhaaMCHIo1NCTRUZsAQedVCdzgEbTMwSdFdorjIEJ8voM3jYJIezJQVZ2jHieVG3cw34pP3d+8I7JOkGlVxtUIE0WIJxab9okWtBxOKhEczkBGa7m5udkIJKrlg5v7/e7XQnD7m56M0W68HsOT5fu/uAJkVcSVA2Rmhz1uuWduCYtjwWgDRXBjDiIcvgDJeKSTADNznPmjRRkky4TAtlyUQazpsgjmbjBRRnWVQJpkeL0qgohrhj6jBc9GnT/YHjqqwsqHjqMq0EsQXxZUISriG2YkwW/Vo+fNdSPIZUs7jFpJHM5q2S+zhbdviunWlW5i3JhhCDENeiaVTeXPBIMz32KRSXpuXJz3RRqcS0SmYtaGXQ3mo+apmclWBaKbetmInY/yfephSFlUwPzf+hdiRYhpsT5gRYd1KlFn6GpHYakof73YeRQL/zGjaHTAOo2k0+Xucy5xaWdCJRQe38e04jbJLc2tJ8u72NNdkxFrFhFOdMZdCJC7n9tgLj+81s977ZPdg52DYgORZahA0m25fc5m2fRJurdoTNC3qi93hvffoJqSeUYXN7fkKaiSJiguIv9WZHoEyl4SgpBBbAEbZ2XCRwSDUINrqyLTD4xSI6O+kNnD84XwALp3x80mfKk6tBwSUmIBn2Ak2Z5GKcQMoqYWtHTXq1XiwSk/qqqMPmvDODJwjJYbdz0IqxHy2yzQSWPDqwI5N6iMUkEZsqO/JQR1NjZ7bOsNd2B/VyUk8Bm0xDfyyjQjzDlNwUxdTux5cvaqe8C8lrJ2vHMVzaB3ubMgqSZZNoZjLz4Q36eLPhXVv5I73dwbKH/rOXnpIrBye9BfpcNKqdEddOvPLU2j1HTc8BE2XO6utQf3m+xHqSCeBx3p5yf9sOHrTB62XxfpAeZv6UZZ9nEj3RaVV5OEcj6ehUXt8oC/kCx01ym8Vso150sUVHEdNnWHw0j4qRoxf+3QxprisBJAee5RZv173d0pImOcmBsNhWTBA0C+kQbwh/zcOoSa6eJnmKo5KpGEgE9hL71+sSdEbMhMZw6qoZ4mjxAO1upweyeWXdzwuN7OA0IoUiWFREQGqJ4Ql4i7m81nv1fyA4AB6/F0RPMpmg1J4FHCO95aFxc/Fqp9PD8H7aWT/anw2U1eDL4KtgI+gFe8FR8H1wHJwGcePXxm+N3xt/rPy58vfKP6uNqeqd2Td4ECw8q+G/RnbpAg==</latexit><latexit sha1_base64="xTBt0b7gexFjuM2uz7TfXLpxIE8=">AAAIUHicfVVfb9s2EJe7rcm0P23Wx72wSz0kge3YKbIkAwIEa1GsQLtlc9IWCI2Mkk4SYZJSSSqxS+gT7NPsdfsWe9s32dt2tJ3FdrLqQaKOd7+7+/GOF5WCG9vt/tW488GHH91dWf04/OTTzz6/d3/ti1emqHQMp3EhCv0mYgYEV3BquRXwptTAZCTgdTR84vdfX4A2vFAndlzCQLJM8ZTHzKLofK3xiEaQceWY4JnaqkNqYWTdD4VqK8hQ6YLbcU2+prkpWQyu29nZjWVN6MXlOWycbhKawVvSJVMzkhaaMCHIo1NCTRUZsAQedVCdzgEbTMwSdFdorjIEJ8voM3jYJIezJQVZ2jHieVG3cw34pP3d+8I7JOkGlVxtUIE0WIJxab9okWtBxOKhEczkBGa7m5udkIJKrlg5v7/e7XQnD7m56M0W68HsOT5fu/uAJkVcSVA2Rmhz1uuWduCYtjwWgDRXBjDiIcvgDJeKSTADNznPmjRRkky4TAtlyUQazpsgjmbjBRRnWVQJpkeL0qgohrhj6jBc9GnT/YHjqqwsqHjqMq0EsQXxZUISriG2YkwW/Vo+fNdSPIZUs7jFpJHM5q2S+zhbdviunWlW5i3JhhCDENeiaVTeXPBIMz32KRSXpuXJz3RRqcS0SmYtaGXQ3mo+apmclWBaKbetmInY/yfephSFlUwPzf+hdiRYhpsT5gRYd1KlFn6GpHYakof73YeRQL/zGjaHTAOo2k0+Xucy5xaWdCJRQe38e04jbJLc2tJ8u72NNdkxFrFhFOdMZdCJC7n9tgLj+81s977ZPdg52DYgORZahA0m25fc5m2fRJurdoTNC3qi93hvffoJqSeUYXN7fkKaiSJiguIv9WZHoEyl4SgpBBbAEbZ2XCRwSDUINrqyLTD4xSI6O+kNnD84XwALp3x80mfKk6tBwSUmIBn2Ak2Z5GKcQMoqYWtHTXq1XiwSk/qqqMPmvDODJwjJYbdz0IqxHy2yzQSWPDqwI5N6iMUkEZsqO/JQR1NjZ7bOsNd2B/VyUk8Bm0xDfyyjQjzDlNwUxdTux5cvaqe8C8lrJ2vHMVzaB3ubMgqSZZNoZjLz4Q36eLPhXVv5I73dwbKH/rOXnpIrBye9BfpcNKqdEddOvPLU2j1HTc8BE2XO6utQf3m+xHqSCeBx3p5yf9sOHrTB62XxfpAeZv6UZZ9nEj3RaVV5OEcj6ehUXt8oC/kCx01ym8Vso150sUVHEdNnWHw0j4qRoxf+3QxprisBJAee5RZv173d0pImOcmBsNhWTBA0C+kQbwh/zcOoSa6eJnmKo5KpGEgE9hL71+sSdEbMhMZw6qoZ4mjxAO1upweyeWXdzwuN7OA0IoUiWFREQGqJ4Ql4i7m81nv1fyA4AB6/F0RPMpmg1J4FHCO95aFxc/Fqp9PD8H7aWT/anw2U1eDL4KtgI+gFe8FR8H1wHJwGcePXxm+N3xt/rPy58vfKP6uNqeqd2Td4ECw8q+G/RnbpAg==</latexit><latexit sha1_base64="xTBt0b7gexFjuM2uz7TfXLpxIE8=">AAAIUHicfVVfb9s2EJe7rcm0P23Wx72wSz0kge3YKbIkAwIEa1GsQLtlc9IWCI2Mkk4SYZJSSSqxS+gT7NPsdfsWe9s32dt2tJ3FdrLqQaKOd7+7+/GOF5WCG9vt/tW488GHH91dWf04/OTTzz6/d3/ti1emqHQMp3EhCv0mYgYEV3BquRXwptTAZCTgdTR84vdfX4A2vFAndlzCQLJM8ZTHzKLofK3xiEaQceWY4JnaqkNqYWTdD4VqK8hQ6YLbcU2+prkpWQyu29nZjWVN6MXlOWycbhKawVvSJVMzkhaaMCHIo1NCTRUZsAQedVCdzgEbTMwSdFdorjIEJ8voM3jYJIezJQVZ2jHieVG3cw34pP3d+8I7JOkGlVxtUIE0WIJxab9okWtBxOKhEczkBGa7m5udkIJKrlg5v7/e7XQnD7m56M0W68HsOT5fu/uAJkVcSVA2Rmhz1uuWduCYtjwWgDRXBjDiIcvgDJeKSTADNznPmjRRkky4TAtlyUQazpsgjmbjBRRnWVQJpkeL0qgohrhj6jBc9GnT/YHjqqwsqHjqMq0EsQXxZUISriG2YkwW/Vo+fNdSPIZUs7jFpJHM5q2S+zhbdviunWlW5i3JhhCDENeiaVTeXPBIMz32KRSXpuXJz3RRqcS0SmYtaGXQ3mo+apmclWBaKbetmInY/yfephSFlUwPzf+hdiRYhpsT5gRYd1KlFn6GpHYakof73YeRQL/zGjaHTAOo2k0+Xucy5xaWdCJRQe38e04jbJLc2tJ8u72NNdkxFrFhFOdMZdCJC7n9tgLj+81s977ZPdg52DYgORZahA0m25fc5m2fRJurdoTNC3qi93hvffoJqSeUYXN7fkKaiSJiguIv9WZHoEyl4SgpBBbAEbZ2XCRwSDUINrqyLTD4xSI6O+kNnD84XwALp3x80mfKk6tBwSUmIBn2Ak2Z5GKcQMoqYWtHTXq1XiwSk/qqqMPmvDODJwjJYbdz0IqxHy2yzQSWPDqwI5N6iMUkEZsqO/JQR1NjZ7bOsNd2B/VyUk8Bm0xDfyyjQjzDlNwUxdTux5cvaqe8C8lrJ2vHMVzaB3ubMgqSZZNoZjLz4Q36eLPhXVv5I73dwbKH/rOXnpIrBye9BfpcNKqdEddOvPLU2j1HTc8BE2XO6utQf3m+xHqSCeBx3p5yf9sOHrTB62XxfpAeZv6UZZ9nEj3RaVV5OEcj6ehUXt8oC/kCx01ym8Vso150sUVHEdNnWHw0j4qRoxf+3QxprisBJAee5RZv173d0pImOcmBsNhWTBA0C+kQbwh/zcOoSa6eJnmKo5KpGEgE9hL71+sSdEbMhMZw6qoZ4mjxAO1upweyeWXdzwuN7OA0IoUiWFREQGqJ4Ql4i7m81nv1fyA4AB6/F0RPMpmg1J4FHCO95aFxc/Fqp9PD8H7aWT/anw2U1eDL4KtgI+gFe8FR8H1wHJwGcePXxm+N3xt/rPy58vfKP6uNqeqd2Td4ECw8q+G/RnbpAg==</latexit> cutH(S) = f (2) + f (1) = w2 + 1<latexit sha1_base64="djHeAEhlAe+wWiTssHtiXt8DSlg=">AAAHgHicfVVbb9s2FFa7re60W7o+7oVdYCDNfJOLLEmBAAZWFC3QYtnstAUiI6OkI4kwSakkVdsl9Mv2S/a41+1P7NByFjvJRsAWL+c7H885H8mo5EybweCPO3c/+fSze637n/tffPnV19/sPPj2jS4qFcNZXPBCvYuoBs4knBlmOLwrFVARcXgbzX5y628/gNKskBOzLGEqaCZZymJqcOpi5yyMIGPSwvtqNbNf+6GBhbFxZeoLGwpq8phy+6Ku98aPyQlJ94aPyQ/4CdxofjHEQeCHIJMNHxc7u4PeYNXIzU6w7ux663Z68eDewzAp4kqANDGnWp8Hg9JMLVWGxRxwU5WGksYzmsE5diUVoKd2FX9N2jiTkLRQ+JOGrGb9TQj6UXS55cUaGlWcqsX2bFQUM1zRte9vc5r0aGqZLCsDMm4o04oTUxCXVpIwBbHhS7LNa9jsY0eyGFJF4w4V2uWzUzK3z46ZfexmipZ5R9AZxMD51VSzKwfnLFJULV0IxVx3IvScqaKSie6U1BhQUiPeKLbo6JyWoDspMx2sWezGicOUvDCCqpn+L689AYbi4ipzHIydVKmBXyGprYLk0dHgUcSRd9PC5JApAFnb1cfZzHNm4JpNxCuorfvfsPDbJDem1E/7fdRaTxv0DYs4pzKDXlyI/vsKtFOS7gc/HhwPj/saBEMZR6gv0Z0zk3ddEF0muxGKHdTK7snhbvPxQ5dQiofB5ccPM15ElIc4DB1sBFJXCkZJwVEAIzwKcZHASaiA08UltsDNb4vofBJMrSucE8BWlU8nYypdchVImGMAguJxCFMqGF8mkNKKm9qGOr3sb4tEp04Vtd/eJNNYQUhOBr3jTiwYkqIsOEoeCcxCp87FdpDoO5Rm4VyNGrDV++d41g6m9fWgngEeMgXjpYgK/hxDso0XXdufX7+qrXQUgtVW1JbhdsMxmNuMcSK5DonWkDWHA4yrCMtpKlfS2wmuM4yfv3YpuSSYBFvps9GitppfkTjjBm1f1s2lRXmZ0/pqq7+9vJb1JOPA4rzb5P62FSy0xutl+34Qzs1mlcWYZQKZwkZVzp0NI2HDZr6+IQvxCq/n5DbEeqHeptgPFxFV5yi+MI+KhQ0/uP+2H+aq4kByYFlu8HY9PCgNaZNJDoTGpqKcIMwPZ3hDDHrDA1i0yWVrk2f4tFAZA4nAzPH8OluCZESv0ug3VG2fkJWD7qAXgGhfosd5oTA7TGakkARFRTikhmiWgENsxLUb1P86wQfgyf86UatIVl5qlwV8RoLrj8bNzpthL8Dt/TLcHR2tH5T73nfe996eF3iH3sh74Z16Z17s/e796f3l/d2629pr9VtBY3r3zhrz0Ntqraf/ACQ3oHo=</latexit><latexit sha1_base64="djHeAEhlAe+wWiTssHtiXt8DSlg=">AAAHgHicfVVbb9s2FFa7re60W7o+7oVdYCDNfJOLLEmBAAZWFC3QYtnstAUiI6OkI4kwSakkVdsl9Mv2S/a41+1P7NByFjvJRsAWL+c7H885H8mo5EybweCPO3c/+fSze637n/tffPnV19/sPPj2jS4qFcNZXPBCvYuoBs4knBlmOLwrFVARcXgbzX5y628/gNKskBOzLGEqaCZZymJqcOpi5yyMIGPSwvtqNbNf+6GBhbFxZeoLGwpq8phy+6Ku98aPyQlJ94aPyQ/4CdxofjHEQeCHIJMNHxc7u4PeYNXIzU6w7ux663Z68eDewzAp4kqANDGnWp8Hg9JMLVWGxRxwU5WGksYzmsE5diUVoKd2FX9N2jiTkLRQ+JOGrGb9TQj6UXS55cUaGlWcqsX2bFQUM1zRte9vc5r0aGqZLCsDMm4o04oTUxCXVpIwBbHhS7LNa9jsY0eyGFJF4w4V2uWzUzK3z46ZfexmipZ5R9AZxMD51VSzKwfnLFJULV0IxVx3IvScqaKSie6U1BhQUiPeKLbo6JyWoDspMx2sWezGicOUvDCCqpn+L689AYbi4ipzHIydVKmBXyGprYLk0dHgUcSRd9PC5JApAFnb1cfZzHNm4JpNxCuorfvfsPDbJDem1E/7fdRaTxv0DYs4pzKDXlyI/vsKtFOS7gc/HhwPj/saBEMZR6gv0Z0zk3ddEF0muxGKHdTK7snhbvPxQ5dQiofB5ccPM15ElIc4DB1sBFJXCkZJwVEAIzwKcZHASaiA08UltsDNb4vofBJMrSucE8BWlU8nYypdchVImGMAguJxCFMqGF8mkNKKm9qGOr3sb4tEp04Vtd/eJNNYQUhOBr3jTiwYkqIsOEoeCcxCp87FdpDoO5Rm4VyNGrDV++d41g6m9fWgngEeMgXjpYgK/hxDso0XXdufX7+qrXQUgtVW1JbhdsMxmNuMcSK5DonWkDWHA4yrCMtpKlfS2wmuM4yfv3YpuSSYBFvps9GitppfkTjjBm1f1s2lRXmZ0/pqq7+9vJb1JOPA4rzb5P62FSy0xutl+34Qzs1mlcWYZQKZwkZVzp0NI2HDZr6+IQvxCq/n5DbEeqHeptgPFxFV5yi+MI+KhQ0/uP+2H+aq4kByYFlu8HY9PCgNaZNJDoTGpqKcIMwPZ3hDDHrDA1i0yWVrk2f4tFAZA4nAzPH8OluCZESv0ug3VG2fkJWD7qAXgGhfosd5oTA7TGakkARFRTikhmiWgENsxLUb1P86wQfgyf86UatIVl5qlwV8RoLrj8bNzpthL8Dt/TLcHR2tH5T73nfe996eF3iH3sh74Z16Z17s/e796f3l/d2629pr9VtBY3r3zhrz0Ntqraf/ACQ3oHo=</latexit><latexit sha1_base64="djHeAEhlAe+wWiTssHtiXt8DSlg=">AAAHgHicfVVbb9s2FFa7re60W7o+7oVdYCDNfJOLLEmBAAZWFC3QYtnstAUiI6OkI4kwSakkVdsl9Mv2S/a41+1P7NByFjvJRsAWL+c7H885H8mo5EybweCPO3c/+fSze637n/tffPnV19/sPPj2jS4qFcNZXPBCvYuoBs4knBlmOLwrFVARcXgbzX5y628/gNKskBOzLGEqaCZZymJqcOpi5yyMIGPSwvtqNbNf+6GBhbFxZeoLGwpq8phy+6Ku98aPyQlJ94aPyQ/4CdxofjHEQeCHIJMNHxc7u4PeYNXIzU6w7ux663Z68eDewzAp4kqANDGnWp8Hg9JMLVWGxRxwU5WGksYzmsE5diUVoKd2FX9N2jiTkLRQ+JOGrGb9TQj6UXS55cUaGlWcqsX2bFQUM1zRte9vc5r0aGqZLCsDMm4o04oTUxCXVpIwBbHhS7LNa9jsY0eyGFJF4w4V2uWzUzK3z46ZfexmipZ5R9AZxMD51VSzKwfnLFJULV0IxVx3IvScqaKSie6U1BhQUiPeKLbo6JyWoDspMx2sWezGicOUvDCCqpn+L689AYbi4ipzHIydVKmBXyGprYLk0dHgUcSRd9PC5JApAFnb1cfZzHNm4JpNxCuorfvfsPDbJDem1E/7fdRaTxv0DYs4pzKDXlyI/vsKtFOS7gc/HhwPj/saBEMZR6gv0Z0zk3ddEF0muxGKHdTK7snhbvPxQ5dQiofB5ccPM15ElIc4DB1sBFJXCkZJwVEAIzwKcZHASaiA08UltsDNb4vofBJMrSucE8BWlU8nYypdchVImGMAguJxCFMqGF8mkNKKm9qGOr3sb4tEp04Vtd/eJNNYQUhOBr3jTiwYkqIsOEoeCcxCp87FdpDoO5Rm4VyNGrDV++d41g6m9fWgngEeMgXjpYgK/hxDso0XXdufX7+qrXQUgtVW1JbhdsMxmNuMcSK5DonWkDWHA4yrCMtpKlfS2wmuM4yfv3YpuSSYBFvps9GitppfkTjjBm1f1s2lRXmZ0/pqq7+9vJb1JOPA4rzb5P62FSy0xutl+34Qzs1mlcWYZQKZwkZVzp0NI2HDZr6+IQvxCq/n5DbEeqHeptgPFxFV5yi+MI+KhQ0/uP+2H+aq4kByYFlu8HY9PCgNaZNJDoTGpqKcIMwPZ3hDDHrDA1i0yWVrk2f4tFAZA4nAzPH8OluCZESv0ug3VG2fkJWD7qAXgGhfosd5oTA7TGakkARFRTikhmiWgENsxLUb1P86wQfgyf86UatIVl5qlwV8RoLrj8bNzpthL8Dt/TLcHR2tH5T73nfe996eF3iH3sh74Z16Z17s/e796f3l/d2629pr9VtBY3r3zhrz0Ntqraf/ACQ3oHo=</latexit><latexit sha1_base64="djHeAEhlAe+wWiTssHtiXt8DSlg=">AAAHgHicfVVbb9s2FFa7re60W7o+7oVdYCDNfJOLLEmBAAZWFC3QYtnstAUiI6OkI4kwSakkVdsl9Mv2S/a41+1P7NByFjvJRsAWL+c7H885H8mo5EybweCPO3c/+fSze637n/tffPnV19/sPPj2jS4qFcNZXPBCvYuoBs4knBlmOLwrFVARcXgbzX5y628/gNKskBOzLGEqaCZZymJqcOpi5yyMIGPSwvtqNbNf+6GBhbFxZeoLGwpq8phy+6Ku98aPyQlJ94aPyQ/4CdxofjHEQeCHIJMNHxc7u4PeYNXIzU6w7ux663Z68eDewzAp4kqANDGnWp8Hg9JMLVWGxRxwU5WGksYzmsE5diUVoKd2FX9N2jiTkLRQ+JOGrGb9TQj6UXS55cUaGlWcqsX2bFQUM1zRte9vc5r0aGqZLCsDMm4o04oTUxCXVpIwBbHhS7LNa9jsY0eyGFJF4w4V2uWzUzK3z46ZfexmipZ5R9AZxMD51VSzKwfnLFJULV0IxVx3IvScqaKSie6U1BhQUiPeKLbo6JyWoDspMx2sWezGicOUvDCCqpn+L689AYbi4ipzHIydVKmBXyGprYLk0dHgUcSRd9PC5JApAFnb1cfZzHNm4JpNxCuorfvfsPDbJDem1E/7fdRaTxv0DYs4pzKDXlyI/vsKtFOS7gc/HhwPj/saBEMZR6gv0Z0zk3ddEF0muxGKHdTK7snhbvPxQ5dQiofB5ccPM15ElIc4DB1sBFJXCkZJwVEAIzwKcZHASaiA08UltsDNb4vofBJMrSucE8BWlU8nYypdchVImGMAguJxCFMqGF8mkNKKm9qGOr3sb4tEp04Vtd/eJNNYQUhOBr3jTiwYkqIsOEoeCcxCp87FdpDoO5Rm4VyNGrDV++d41g6m9fWgngEeMgXjpYgK/hxDso0XXdufX7+qrXQUgtVW1JbhdsMxmNuMcSK5DonWkDWHA4yrCMtpKlfS2wmuM4yfv3YpuSSYBFvps9GitppfkTjjBm1f1s2lRXmZ0/pqq7+9vJb1JOPA4rzb5P62FSy0xutl+34Qzs1mlcWYZQKZwkZVzp0NI2HDZr6+IQvxCq/n5DbEeqHeptgPFxFV5yi+MI+KhQ0/uP+2H+aq4kByYFlu8HY9PCgNaZNJDoTGpqKcIMwPZ3hDDHrDA1i0yWVrk2f4tFAZA4nAzPH8OluCZESv0ug3VG2fkJWD7qAXgGhfosd5oTA7TGakkARFRTikhmiWgENsxLUb1P86wQfgyf86UatIVl5qlwV8RoLrj8bNzpthL8Dt/TLcHR2tH5T73nfe996eF3iH3sh74Z16Z17s/e796f3l/d2629pr9VtBY3r3zhrz0Ntqraf/ACQ3oHo=</latexit> Only need to specify f(1), f(2), …, f(⌊r / 2⌋), where r = max hyperedge size. Just scalars. f(i) = wi.
10. 10. Cardinality-based splitting functions are easy to specify. 10 Just need to specify w2, ... , wbr/2c and assume w1 = 1.<latexit sha1_base64="OwBovXiRkyHjnkYdEriLKgfnPdk=">AAAHfnicfVVdb9s2FFW7re60j6br417YJR6GQv6QiyzJgAAGVhTr0GLZ7LQFIiOjpCuLMClqJFXbJfTD9lP2tNftX+xSdhbbyaYHiSLvOYf38pCMS8606ff/uHP3gw8/ute6/7H/yaefff5g7+EXr7WsVALnieRSvY2pBs4KODfMcHhbKqAi5vAmnn3vxt+8A6WZLMZmWcJE0GnBMpZQg12Xe6MfK21IAZASI4kuIWHZkhzMLwcBiXgqjQ7I/NJGPONSKqJIjwxIpJq/+oDQIiVU60qAw4TklIQH3cu9/X633zzkZiNcN/a99XN2+fDeoyiVCbIUJuHIdxH2SzOxVBmWcKj9qNJQ0mRGp3CBzYIK0BPbZF+TNvakJMPZZbIwpOn1NyHIo+hyi8UaGlecqsV2byzlDEd07fvbmiY7nlhWlJWBIllJZhV3JXNFJSlTkBi+JNu6hs3eBwVLIFM0CajQgpo8KJmbZ2Bm7ztTRcs8EHQGCXB+3bWalYNzFiuqli4FOddBjMxTJasi1UFJjQFVaMQbxRaBzmkJOsiYCRLKE/efOkzJpRFUzfR/sXYFGIqDTeU4GDuuMgO/QFpbBenj4/7jmKPuZoTJYaoAito2Hxczz5mBnZiYV1Bb996I8NskN6bU3/V6BhZdbZAbFklOiyl0Eyl6v1WgnTt1L/z28GRw0tMgGJo4Rs+KzpyZvOOS6LCiE6PVQTVxT4/2Vx8/cgWluBVcffxoymVMeYS/kYMNodCVgmEqORpgiBshkSmcRgo4XVxhJU5+20QX43Bi3cI5A2yt8tl4RAtXXAUFzDEBgbvCRhkVjC9TyGjFTW0jnV21t02iM+eK2m9vimlcQUhP+92TIBEMRdEWHC2PAmahM0exnSRyR4VZOKrhCmz1kwvca4eTejepZ4CbTMFoKWLJn2NKdsWia/vTq5e1LZyEYLUVtWU43WgE5rZg7Eh3IfEastZwgFEV43Kayi3p7QK7CqPnr1xJrgTG4Vb5bLyorebXIi54hbYvMNLVgPIyp/X1VH99sVP1dMqBJXlnVfvbRnChNR4v2+eDcDSbqyxGbCpQKVq5ytHZKBY2WvXXN2whXuLhnN6GWA/U2xJPokVM1QWaL8pjubDRO/du+1GuKg4kBzbNDZ6uR4elIW0yzoHQxFSUE4T50QxPiH53cAiLNrl62uQZXiy0SIDEYOa4f11sc5brpoz+SqrtE9IQdPrdEET7Cj3KpcLqsGJKZEHQVIRDZohmKTjERl77Yf0vCV4AT/+XRDWZNCy1qwJeI+HupXGz8XrQDXF6Pw/2h8frC+W+96X3lfeNF3pH3tD7wTvzzr3E+9370/vL+7vltb5udVq9VejdO2vMI2/raR3/Azldnuc=</latexit><latexit sha1_base64="OwBovXiRkyHjnkYdEriLKgfnPdk=">AAAHfnicfVVdb9s2FFW7re60j6br417YJR6GQv6QiyzJgAAGVhTr0GLZ7LQFIiOjpCuLMClqJFXbJfTD9lP2tNftX+xSdhbbyaYHiSLvOYf38pCMS8606ff/uHP3gw8/ute6/7H/yaefff5g7+EXr7WsVALnieRSvY2pBs4KODfMcHhbKqAi5vAmnn3vxt+8A6WZLMZmWcJE0GnBMpZQg12Xe6MfK21IAZASI4kuIWHZkhzMLwcBiXgqjQ7I/NJGPONSKqJIjwxIpJq/+oDQIiVU60qAw4TklIQH3cu9/X633zzkZiNcN/a99XN2+fDeoyiVCbIUJuHIdxH2SzOxVBmWcKj9qNJQ0mRGp3CBzYIK0BPbZF+TNvakJMPZZbIwpOn1NyHIo+hyi8UaGlecqsV2byzlDEd07fvbmiY7nlhWlJWBIllJZhV3JXNFJSlTkBi+JNu6hs3eBwVLIFM0CajQgpo8KJmbZ2Bm7ztTRcs8EHQGCXB+3bWalYNzFiuqli4FOddBjMxTJasi1UFJjQFVaMQbxRaBzmkJOsiYCRLKE/efOkzJpRFUzfR/sXYFGIqDTeU4GDuuMgO/QFpbBenj4/7jmKPuZoTJYaoAito2Hxczz5mBnZiYV1Bb996I8NskN6bU3/V6BhZdbZAbFklOiyl0Eyl6v1WgnTt1L/z28GRw0tMgGJo4Rs+KzpyZvOOS6LCiE6PVQTVxT4/2Vx8/cgWluBVcffxoymVMeYS/kYMNodCVgmEqORpgiBshkSmcRgo4XVxhJU5+20QX43Bi3cI5A2yt8tl4RAtXXAUFzDEBgbvCRhkVjC9TyGjFTW0jnV21t02iM+eK2m9vimlcQUhP+92TIBEMRdEWHC2PAmahM0exnSRyR4VZOKrhCmz1kwvca4eTejepZ4CbTMFoKWLJn2NKdsWia/vTq5e1LZyEYLUVtWU43WgE5rZg7Eh3IfEastZwgFEV43Kayi3p7QK7CqPnr1xJrgTG4Vb5bLyorebXIi54hbYvMNLVgPIyp/X1VH99sVP1dMqBJXlnVfvbRnChNR4v2+eDcDSbqyxGbCpQKVq5ytHZKBY2WvXXN2whXuLhnN6GWA/U2xJPokVM1QWaL8pjubDRO/du+1GuKg4kBzbNDZ6uR4elIW0yzoHQxFSUE4T50QxPiH53cAiLNrl62uQZXiy0SIDEYOa4f11sc5brpoz+SqrtE9IQdPrdEET7Cj3KpcLqsGJKZEHQVIRDZohmKTjERl77Yf0vCV4AT/+XRDWZNCy1qwJeI+HupXGz8XrQDXF6Pw/2h8frC+W+96X3lfeNF3pH3tD7wTvzzr3E+9370/vL+7vltb5udVq9VejdO2vMI2/raR3/Azldnuc=</latexit><latexit sha1_base64="OwBovXiRkyHjnkYdEriLKgfnPdk=">AAAHfnicfVVdb9s2FFW7re60j6br417YJR6GQv6QiyzJgAAGVhTr0GLZ7LQFIiOjpCuLMClqJFXbJfTD9lP2tNftX+xSdhbbyaYHiSLvOYf38pCMS8606ff/uHP3gw8/ute6/7H/yaefff5g7+EXr7WsVALnieRSvY2pBs4KODfMcHhbKqAi5vAmnn3vxt+8A6WZLMZmWcJE0GnBMpZQg12Xe6MfK21IAZASI4kuIWHZkhzMLwcBiXgqjQ7I/NJGPONSKqJIjwxIpJq/+oDQIiVU60qAw4TklIQH3cu9/X633zzkZiNcN/a99XN2+fDeoyiVCbIUJuHIdxH2SzOxVBmWcKj9qNJQ0mRGp3CBzYIK0BPbZF+TNvakJMPZZbIwpOn1NyHIo+hyi8UaGlecqsV2byzlDEd07fvbmiY7nlhWlJWBIllJZhV3JXNFJSlTkBi+JNu6hs3eBwVLIFM0CajQgpo8KJmbZ2Bm7ztTRcs8EHQGCXB+3bWalYNzFiuqli4FOddBjMxTJasi1UFJjQFVaMQbxRaBzmkJOsiYCRLKE/efOkzJpRFUzfR/sXYFGIqDTeU4GDuuMgO/QFpbBenj4/7jmKPuZoTJYaoAito2Hxczz5mBnZiYV1Bb996I8NskN6bU3/V6BhZdbZAbFklOiyl0Eyl6v1WgnTt1L/z28GRw0tMgGJo4Rs+KzpyZvOOS6LCiE6PVQTVxT4/2Vx8/cgWluBVcffxoymVMeYS/kYMNodCVgmEqORpgiBshkSmcRgo4XVxhJU5+20QX43Bi3cI5A2yt8tl4RAtXXAUFzDEBgbvCRhkVjC9TyGjFTW0jnV21t02iM+eK2m9vimlcQUhP+92TIBEMRdEWHC2PAmahM0exnSRyR4VZOKrhCmz1kwvca4eTejepZ4CbTMFoKWLJn2NKdsWia/vTq5e1LZyEYLUVtWU43WgE5rZg7Eh3IfEastZwgFEV43Kayi3p7QK7CqPnr1xJrgTG4Vb5bLyorebXIi54hbYvMNLVgPIyp/X1VH99sVP1dMqBJXlnVfvbRnChNR4v2+eDcDSbqyxGbCpQKVq5ytHZKBY2WvXXN2whXuLhnN6GWA/U2xJPokVM1QWaL8pjubDRO/du+1GuKg4kBzbNDZ6uR4elIW0yzoHQxFSUE4T50QxPiH53cAiLNrl62uQZXiy0SIDEYOa4f11sc5brpoz+SqrtE9IQdPrdEET7Cj3KpcLqsGJKZEHQVIRDZohmKTjERl77Yf0vCV4AT/+XRDWZNCy1qwJeI+HupXGz8XrQDXF6Pw/2h8frC+W+96X3lfeNF3pH3tD7wTvzzr3E+9370/vL+7vltb5udVq9VejdO2vMI2/raR3/Azldnuc=</latexit><latexit sha1_base64="OwBovXiRkyHjnkYdEriLKgfnPdk=">AAAHfnicfVVdb9s2FFW7re60j6br417YJR6GQv6QiyzJgAAGVhTr0GLZ7LQFIiOjpCuLMClqJFXbJfTD9lP2tNftX+xSdhbbyaYHiSLvOYf38pCMS8606ff/uHP3gw8/ute6/7H/yaefff5g7+EXr7WsVALnieRSvY2pBs4KODfMcHhbKqAi5vAmnn3vxt+8A6WZLMZmWcJE0GnBMpZQg12Xe6MfK21IAZASI4kuIWHZkhzMLwcBiXgqjQ7I/NJGPONSKqJIjwxIpJq/+oDQIiVU60qAw4TklIQH3cu9/X633zzkZiNcN/a99XN2+fDeoyiVCbIUJuHIdxH2SzOxVBmWcKj9qNJQ0mRGp3CBzYIK0BPbZF+TNvakJMPZZbIwpOn1NyHIo+hyi8UaGlecqsV2byzlDEd07fvbmiY7nlhWlJWBIllJZhV3JXNFJSlTkBi+JNu6hs3eBwVLIFM0CajQgpo8KJmbZ2Bm7ztTRcs8EHQGCXB+3bWalYNzFiuqli4FOddBjMxTJasi1UFJjQFVaMQbxRaBzmkJOsiYCRLKE/efOkzJpRFUzfR/sXYFGIqDTeU4GDuuMgO/QFpbBenj4/7jmKPuZoTJYaoAito2Hxczz5mBnZiYV1Bb996I8NskN6bU3/V6BhZdbZAbFklOiyl0Eyl6v1WgnTt1L/z28GRw0tMgGJo4Rs+KzpyZvOOS6LCiE6PVQTVxT4/2Vx8/cgWluBVcffxoymVMeYS/kYMNodCVgmEqORpgiBshkSmcRgo4XVxhJU5+20QX43Bi3cI5A2yt8tl4RAtXXAUFzDEBgbvCRhkVjC9TyGjFTW0jnV21t02iM+eK2m9vimlcQUhP+92TIBEMRdEWHC2PAmahM0exnSRyR4VZOKrhCmz1kwvca4eTejepZ4CbTMFoKWLJn2NKdsWia/vTq5e1LZyEYLUVtWU43WgE5rZg7Eh3IfEastZwgFEV43Kayi3p7QK7CqPnr1xJrgTG4Vb5bLyorebXIi54hbYvMNLVgPIyp/X1VH99sVP1dMqBJXlnVfvbRnChNR4v2+eDcDSbqyxGbCpQKVq5ytHZKBY2WvXXN2whXuLhnN6GWA/U2xJPokVM1QWaL8pjubDRO/du+1GuKg4kBzbNDZ6uR4elIW0yzoHQxFSUE4T50QxPiH53cAiLNrl62uQZXiy0SIDEYOa4f11sc5brpoz+SqrtE9IQdPrdEET7Cj3KpcLqsGJKZEHQVIRDZohmKTjERl77Yf0vCV4AT/+XRDWZNCy1qwJeI+HupXGz8XrQDXF6Pw/2h8frC+W+96X3lfeNF3pH3tD7wTvzzr3E+9370/vL+7vltb5udVq9VejdO2vMI2/raR3/Azldnuc=</latexit> r = 2 (graphs) r = 3 (3-uniform hypergraph) “Only one way to split a triangle” [Benson+ 16; Li-Milenkovic 17; Yin+ 17] s t s t s t r = 4 w2 = 0.5 solution w2 = 1.5 solution w3 = 1.5 solution
11. 11. 1.0 1.25 1.5 1.75 2.0 fusion- systems topological- stacks graph- invariants adjacency- matrix signed- graph gorenstein cohen- macaulay topological- k- theory difference- sets pushforward regular- rings graph- connectivity block- matrices directed- graphs eulerian- path central- extensions group- extensions semidirect- product wreath- product graded- algebras supergeometry geometric- complexity soliton- theory matrix- congruences teichmueller- theory superalgebra string- theory riemann- surfaces group- cohomology dglas celestial- mechanics s- seed = symplectic- linear- algebra t- seed = bernoulli- numbers Different weights lead to different min cuts in practice. 11 1.00 1.25 1.50 1.75 2.00 0.7 0.8 0.9 1.0 JaccardSimilarity
12. 12. 12 1. What is a hypergraph minimum s-t cut? 2. If we know what they are, can we find them efficiently? 3. If we can find them efficiently, what can we use them for? We should have a foundation for hypergraph minimum s-t cuts,but…
13. 13. We solve hypergraph cut problems with graph reductions. 13 1/21/2 1/2 1 1 1 1 ∞ ∞ ∞ ∞ ∞∞ Gadgets (expansions) model a hyperedge with a small graph. clique expansion star expansion Lawler gadget [1973]hyperedge In a graph reduction, we first replace all hyperedges with graph gadgets... s t s t s t s t … then solve the (min s-t cut) problem exactly on the graph, and finally convert the solution to a hypergraph solution.
14. 14. s t s t s t s t Existing gadgets model cardinality-based splitting functions. 14 1/21/2 1/2 1 1 1 1 ∞ ∞ ∞ ∞ ∞∞ clique expansion star expansion Lawler gadget [1973]hyperedge Quadratic penalty wi = i ( k – i ) k = hyperedge size Linear penalty wi = i All-or-nothing wi = 1
15. 15. s t Existing gadgets model cardinality-based splitting functions. 15 1 ∞ ∞ ∞ ∞ ∞∞s t 1 ∞ ∞ ∞ ∞ ∞∞with s with t with t must go with s must go with t ⟶ penalty = 1 1 ∞ ∞ ∞ ∞ ∞∞with s with s with s must go with s must go with s ⟶ penalty = 0 Directed min s-t graph cut

### Be the first to comment

Talk at PANNG mini-symposium, SIAM MDS 2020.

Total views

176

On Slideshare

0

From embeds

0

Number of embeds

3

1

Shares

0