Peb 1234330943765774 1

4,376 views

Published on

brief description on the Pre engineered Building Concept

0 Comments
17 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
4,376
On SlideShare
0
From Embeds
0
Number of Embeds
19
Actions
Shares
0
Downloads
0
Comments
0
Likes
17
Embeds 0
No embeds

No notes for slide

Peb 1234330943765774 1

  1. 1. PRE ENGINEERED BUILDINGS <ul><li>Tailor made building based on client’s requirement & actual design calculations using tapered sections. </li></ul><ul><li>A combination of built up section, hot rolled section, cold formed elements and profiled sheets </li></ul><ul><li>Designing and casting is done in factory </li></ul><ul><li>Building components are brought to site </li></ul><ul><li>Then fixed/jointed at the site </li></ul><ul><li>All connections are bolted. </li></ul>
  2. 2. <ul><li>Steel was very expensive item in USA </li></ul><ul><li>The concept of PEB originate from here. </li></ul><ul><li>The idea was that section should be provided as per B.M.D.This lead to the saving in steel and development of PEB concept. </li></ul>BRIEF HISTORY
  3. 3. CONT…. <ul><li>Industrial Building </li></ul>Parking lots Indoor Stadiums Railway Station
  4. 4. <ul><li>Aircraft Hangars </li></ul>Metro Station Wear house High rise Building
  5. 5. <ul><li>Self weight </li></ul><ul><li>30% lighter </li></ul><ul><li>Primary Member is tapered section </li></ul><ul><li>Secondary members are light weight rolled framed “Z” and “C” section </li></ul><ul><li>Self weight </li></ul><ul><li>More heavy </li></ul><ul><li>Primary members are Hot rolled “I” section </li></ul><ul><li>Secondary members are “I” or “C” section which are heavy in weight. </li></ul>
  6. 6. <ul><li>Delivery – average 6 to 8 weeks </li></ul><ul><li>Foundation-simple design, easy to construct & light wt. </li></ul><ul><li>Erection cost and time- accurately known </li></ul><ul><li>Erection process is easy, fast, step by step </li></ul><ul><li>Delivery- average 20 to 26 weeks </li></ul><ul><li>Foundation- expensive, heavy foundation required. </li></ul><ul><li>Erection cost and time- 20% more than PEB </li></ul><ul><li>Erection process is slow and extensive field labor is required. </li></ul>
  7. 7. <ul><li>Seismic Resistance- low weight flexible frames offer higher resistance to seismic forces </li></ul><ul><li>Overall price -30%lower </li></ul><ul><li>architecture-achieved at low cast </li></ul><ul><li>Seismic Resistance- rigid heavy weight structures do not perform well in seismic zones </li></ul><ul><li>Overall price - Higher Price per square meter. </li></ul><ul><li>Architecture- achieved at higher cost </li></ul>
  8. 8. COMPONENTS <ul><li>Main Frame </li></ul><ul><ul><li>Primary Members </li></ul></ul><ul><ul><ul><li>Columns </li></ul></ul></ul><ul><ul><ul><li>Rafters </li></ul></ul></ul><ul><ul><li>Secondary Members </li></ul></ul><ul><ul><ul><li>Purlins </li></ul></ul></ul><ul><ul><ul><li>Girts </li></ul></ul></ul><ul><li>Sheeting </li></ul><ul><ul><li>Roof </li></ul></ul><ul><ul><li>Wall </li></ul></ul><ul><ul><li>Fascias etc </li></ul></ul><ul><li>Accessories </li></ul><ul><ul><li>Ventilators </li></ul></ul><ul><ul><li>Sky Lights </li></ul></ul><ul><ul><li>Misc. </li></ul></ul>
  9. 10. OTHER MAJOR COMPONENTS OF PEB CRANE BRACKETS & BEAMS MEZZANINE FLOORS STRUCTURAL PARTIONS FASCIAS CANOPIES
  10. 11. DESIGN ISSUES <ul><li>STRUCTURAL PLANNING </li></ul><ul><li>FRAME CONFIGURATIONS </li></ul><ul><li>TYPES OF LOADS & ASSESSMENT </li></ul><ul><li>END CONDITIONS </li></ul><ul><li>CRANES </li></ul><ul><li>MEZANINES </li></ul><ul><li>LOAD COMBINATIONS </li></ul>
  11. 12. PRE-ENGINEERED BUILDINGS NOMENCLATURE – STANDARD FRAMING SYSTEMS TCCS = TAPERED COLUMN CLEAR SPAN TCMS-1 TAPERED COLUMN MULTI-SPAN WITH 1 INTERMEDIATE COLUMN .
  12. 13. SSCS = SINGLE SLOPE CLEAR SPAN . SSMS-1= SINGLE SLOPE MULTI-SPAN WITH 1 INTERMEDIATE COLUMN
  13. 14. GUIDELINES FOR PEB DESIGN AT PROPOSAL STAGE <ul><li>ALL DESIGNS SHALL BE AS PER MBMA AMERICAN STANDARDS UNLESS CLIENT SPECIFIES AS PER IS CODE </li></ul><ul><li>LIVE LOAD AS PER AMERICAN CODE = 0.57 KN/M^2  AND AS PER IS CODE = 0.75 KN/M^2. (REDUCTION IN LIVE LOAD TO BE INCORPORATED FOR BUILDINGS HAVING HIGHER SLOPES) </li></ul><ul><li>AS PER AMERICAN CODE :HORIZONTAL DEFLECTION = L/180 & VERTICAL DEFLECTION=Eh/100 FOR MAIN FRAMES. </li></ul><ul><li>WIND TERRAIN CATEGORY 3 IS TO BE SELECTED UNLESS MORE DATA IS AVAILABLE. </li></ul>
  14. 15. CONTD…… <ul><li>IN AMERICAN DESIGN , WIND COEFFICIENTS TO BE FOLLOWED AS GIVEN IN MBMA. </li></ul><ul><li>IN IS DESIGN, INTERNAL & EXTERNAL BUILDING WIND COEFFICIENTS AS PER IS -875 (PART-3). </li></ul><ul><li>GENERALLY BUILDINGS ARE TO BE DESIGNED AS PINNED EXCEPT FOR BUILDING SPAN >30M OR CRANE CAPACITY OF MORE THAN 5 TONS OR HEIGHT GREATER THAN 9 M </li></ul><ul><li>STANDARD PURLIN LAPS SHOULD BE 385 mm </li></ul>
  15. 16. Optimisation of frame <ul><li>Basic Frame </li></ul><ul><li>Width of the frame = 38 m </li></ul><ul><li>Height of the frame = 18m </li></ul><ul><li>Length of the frame = 45 m </li></ul><ul><li>Bay spacing l = 7 m </li></ul><ul><li>Slop of roof i= 1:10 </li></ul><ul><li>Wind speed v = 43 m/s </li></ul><ul><li>Seismic zone = 4 </li></ul>
  16. 17. Varying of Width of Frame Only Primary Frame Design Purline 250 X 2.5 mm 2 Spacing-1.5 7.67 kg/m Design Girt 200X1.75 mm 2 Spacing-1.5 6.09 kg/m
  17. 18. Varying Height and width Only Primary Frame Design Purline 250 X 2.5 mm 2 Spacing-1.5 7.67 kg/m Spacing-1.5 Design Girt 250X2.0 mm 2 Spacing-1.5 6.09 kg/m Spacing-1.5
  18. 19. Varying Bay length with Height Total weight of Frame, Purline and Girt Heigth-6 Heigth-8 Heigth-9 Purline Girt Purline Girt Pur line Girt 6 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 7 Z 250X 2.0 Spacing-1.5 Z 250X1.75 Spacing-1.35 Z 250X 2.0 Spacing-1.5 Z 250X1.75 Spacing-1.35 Z 250X 2.0 Spacing-1.5 Z 250X1.75 Spacing-1.35 8 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 9 C250 X 2.5 Spacing-1.4 C 250 X 2.5 Spacing-1.35 C250 X 2.5 Spacing-1.4 C 250 X 2.5 Spacing-1.35 C250 X 2.5 Spacing-1.4 C 250 X 2.5 Spacing-1.35 10 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0
  19. 20. Varying bay length with width Total weight of Frame, Purline and Girt Heigth-6 Heigth-8 Heigth-9 Purline Girt Purline Girt Purline Girt 6 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 7 Z 250X 2.0 Spacing-1.5 Z 250X1.75 Spacing-1.35 Z 250X 2.0 Spacing-1.5 Z 250X1.75 Spacing-1.35 Z 250X 2.0 Spacing-1.5 Z 250X1.75 Spacing-1.35 8 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 9 C250 X 2.5 Spacing-1.4 C 250 X 2.5 Spacing-1.35 C250 X 2.5 Spacing-1.4 C 250 X 2.5 Spacing-1.35 C250 X 2.5 Spacing-1.4 C 250 X 2.5 Spacing-1.35 10 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0 C 250 X 2.5 Spacing-1.0
  20. 21. Varying wind speed with width Total weight of Frame, Purline and Girt wind Width-20m Width-35 speed Purline Girt Purline Girt 33 Z 200 X 1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 Z 200 X 1.75 Spacing-1.5 Z 200X1.75 Spacing-1.5 39 Z 200 X 2.0 Spacing-1.5 Z 200X2.0 Spacing-1.5 Z 200 X 2.0 Spacing-1.5 Z 200X2.0 Spacing-1.5 43 Z 250 X 2 Spacing-1.5 Z 250X2.0 Spacing-1.4 Z 250 X 2 Spacing-1.5 Z 250X2.0 Spacing-1.4 47 Z 250 X 2.5 Spacing-1.5 Z 250X2.0 Spacing-1.45 Z 250 X 2.5 Spacing-1.5 Z 250X2.0 Spacing-1.45 50 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 Z 250 X 2.5 Spacing-1.5 55 C 250 X 2.5 Spacing-1.35 C 250 X 2.5 Spacing-1.5 C 250 X 2.5 Spacing-1.35 C 250 X 2.5 Spacing-1.5
  21. 22. Steps of Design <ul><li>Wind load calculation </li></ul><ul><li>Purline Design </li></ul><ul><li>Girt Design </li></ul><ul><li>Design of Main Frame </li></ul><ul><li>Base Plate </li></ul><ul><li>Anchor Bolt design for Moment Condition </li></ul><ul><li>Anchor Bolt design for Shear Condition </li></ul><ul><li>Gable column design </li></ul><ul><li>Design of connection plate </li></ul><ul><li>Cranes Design </li></ul>
  22. 23. Wind load calculation
  23. 24. PURLIN
  24. 25. Base plate
  25. 26. PROCESSES PEB BUILT UP LINE COLD FORM LINE SHEETING PRIMARY MEMBERS CKD C & Z PURLINS LINE HR SECTIONS & MISCELLANEOUS PARTS ROOF & WALL SHEETING GUTTER, FLASHINGS, TRIMS, ETC CKD CKD CKD ACCESSORIES SHIPMENT
  26. 27. ERECTION SYSTEM <ul><li>UNDERSTANDING THE ENGINEERING DOCUMENTS. </li></ul><ul><li>Anchor Bolt Setting Plan </li></ul><ul><li>Cross section </li></ul><ul><li>Roof framing plan </li></ul><ul><li>Roof sheeting & framing </li></ul><ul><li>Sidewall sheeting & framing </li></ul><ul><li>Other drawings </li></ul><ul><li>Bill of materials </li></ul>
  27. 28. CONTD… <ul><li>Preparation for Erection </li></ul><ul><li>Pre Erection checks </li></ul><ul><li>Receiving Materials at site </li></ul><ul><li>Unloading Containers </li></ul><ul><li>Erection of the Framing </li></ul><ul><li>Preparation of the First Bay </li></ul><ul><li>Main frames </li></ul><ul><li>Mezzanine floors </li></ul><ul><li>Crane Beams </li></ul>
  28. 29. CONTD…. <ul><li>Sheeting & Trimming </li></ul><ul><li>Sheeting preparation </li></ul><ul><li>Sheeting the walls </li></ul><ul><li>Sheeting the roofs </li></ul><ul><li>Miscellaneous trimmings </li></ul><ul><li>Fascia </li></ul>

×