SlideShare a Scribd company logo

PCAの最終形態GPLVMの解説

WACODE 3rdの資料

1 of 27
Download to read offline
PCAの最終形態
GPLVMの解説
antiplastics@RIKEN  ACCC
2015.11.14
⾃自⼰己紹介
・露露崎弘毅(つゆざき  こうき)
・理理化学研究所  情報基盤センター
          バイオインフォマティクス研究開発ユニット
      (RIKEN  ACCC  BiT)
          特別研究員
・Single-‐‑‒cell  RNA-‐‑‒Seqのデータ解析、解析⼿手法・ソフトウェア
開発をやっています
・連絡先
-‐‑‒  @antiplastics
-‐‑‒  koki.tsuyuzaki  [at]  gmail.com
GPLVMってぐぐってみると...
なるほど、わからん\(^o^)/	
→	
  一体、何をしているのかくらいは理解したい	
PCA(主成分分析)のド発展版に相当する、ガウス過程を用いた
GPLVMを…by	
  Small	
  Data	
  Scien3st	
  Memorandum	
  
PCAのお化けのような手法とでもいえばよいのでしょうか。	
  
by	
  京都大学医学部統計遺伝学分野	
  
今⽇日の発表の流流れ
1	
 2	
 3	
4	
 5	
 6	
Probabilis3c	
  PCA	
  with	
  GPLVM	
この順番に話します
今⽇日の発表の流流れ
1	
 2	
 3	
4	
 5	
 6	
決定論的な解法	
確率論的な解法
今⽇日の発表の流流れ
1	
 2	
 3	
4	
 5	
 6	
普通の	
 カーネルVer	
双対Ver

Recommended

深層生成モデルと世界モデル
深層生成モデルと世界モデル深層生成モデルと世界モデル
深層生成モデルと世界モデルMasahiro Suzuki
 
[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習[DL輪読会]相互情報量最大化による表現学習
[DL輪読会]相互情報量最大化による表現学習Deep Learning JP
 
GAN(と強化学習との関係)
GAN(と強化学習との関係)GAN(と強化学習との関係)
GAN(と強化学習との関係)Masahiro Suzuki
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
スパースモデリング入門
スパースモデリング入門スパースモデリング入門
スパースモデリング入門Hideo Terada
 
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...
Disentanglement Survey:Can You Explain How Much Are Generative models Disenta...Hideki Tsunashima
 

More Related Content

What's hot

最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方joisino
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential EquationsDeep Learning JP
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Yamato OKAMOTO
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門joisino
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Kota Matsui
 
スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元Shogo Muramatsu
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理Taiji Suzuki
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門Kawamoto_Kazuhiko
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究についてMasahiro Suzuki
 
【解説】 一般逆行列
【解説】 一般逆行列【解説】 一般逆行列
【解説】 一般逆行列Kenjiro Sugimoto
 
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-EncoderDeep Learning JP
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介Naoki Hayashi
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向Motokawa Tetsuya
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)Kota Matsui
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習cvpaper. challenge
 
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...Deep Learning JP
 
Rでisomap(多様体学習のはなし)
Rでisomap(多様体学習のはなし)Rでisomap(多様体学習のはなし)
Rでisomap(多様体学習のはなし)Kohta Ishikawa
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展Deep Learning JP
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門ryosuke-kojima
 

What's hot (20)

最適輸送の解き方
最適輸送の解き方最適輸送の解き方
最適輸送の解き方
 
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
SSII2021 [OS2-01] 転移学習の基礎:異なるタスクの知識を利用するための機械学習の方法
 
[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations[DL輪読会]Neural Ordinary Differential Equations
[DL輪読会]Neural Ordinary Differential Equations
 
Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)Skip Connection まとめ(Neural Network)
Skip Connection まとめ(Neural Network)
 
最適輸送入門
最適輸送入門最適輸送入門
最適輸送入門
 
Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2Recent Advances on Transfer Learning and Related Topics Ver.2
Recent Advances on Transfer Learning and Related Topics Ver.2
 
スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元スパースモデリングによる多次元信号・画像復元
スパースモデリングによる多次元信号・画像復元
 
深層学習の数理
深層学習の数理深層学習の数理
深層学習の数理
 
グラフィカルモデル入門
グラフィカルモデル入門グラフィカルモデル入門
グラフィカルモデル入門
 
「世界モデル」と関連研究について
「世界モデル」と関連研究について「世界モデル」と関連研究について
「世界モデル」と関連研究について
 
【解説】 一般逆行列
【解説】 一般逆行列【解説】 一般逆行列
【解説】 一般逆行列
 
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
[DL輪読会]Temporal DifferenceVariationalAuto-Encoder
 
ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介ベイズ統計学の概論的紹介
ベイズ統計学の概論的紹介
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
 
機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)機械学習による統計的実験計画(ベイズ最適化を中心に)
機械学習による統計的実験計画(ベイズ最適化を中心に)
 
【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習【メタサーベイ】数式ドリブン教師あり学習
【メタサーベイ】数式ドリブン教師あり学習
 
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
[DL輪読会]近年のオフライン強化学習のまとめ —Offline Reinforcement Learning: Tutorial, Review, an...
 
Rでisomap(多様体学習のはなし)
Rでisomap(多様体学習のはなし)Rでisomap(多様体学習のはなし)
Rでisomap(多様体学習のはなし)
 
[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展[DL輪読会]Control as Inferenceと発展
[DL輪読会]Control as Inferenceと発展
 
グラフニューラルネットワーク入門
グラフニューラルネットワーク入門グラフニューラルネットワーク入門
グラフニューラルネットワーク入門
 

Similar to PCAの最終形態GPLVMの解説

GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)
GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)
GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)Ryuuta Tsunashima
 
R言語勉強会#4.pdf
R言語勉強会#4.pdfR言語勉強会#4.pdf
R言語勉強会#4.pdfTakuya Kubo
 
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live![part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!KnowledgeGraph
 
ラズパイでデバイスドライバを作ってみた。
ラズパイでデバイスドライバを作ってみた。ラズパイでデバイスドライバを作ってみた。
ラズパイでデバイスドライバを作ってみた。Kazuki Onishi
 
20170127 JAWS HPC-UG#8
20170127 JAWS HPC-UG#820170127 JAWS HPC-UG#8
20170127 JAWS HPC-UG#8Kohei KaiGai
 
Pythonで体験する深層学習 5章
Pythonで体験する深層学習 5章Pythonで体験する深層学習 5章
Pythonで体験する深層学習 5章孝好 飯塚
 
201209 Biopackathon 12th
201209 Biopackathon 12th201209 Biopackathon 12th
201209 Biopackathon 12thSatoshi Kume
 
深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開Seiya Tokui
 
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Yuya Unno
 
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...Shunsuke Ono
 
PostgreSQLとpython
PostgreSQLとpythonPostgreSQLとpython
PostgreSQLとpythonSoudai Sone
 
GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust)
GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust) GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust)
GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust) 智啓 出川
 
Kaggle参加報告: Champs Predicting Molecular Properties
Kaggle参加報告: Champs Predicting Molecular PropertiesKaggle参加報告: Champs Predicting Molecular Properties
Kaggle参加報告: Champs Predicting Molecular PropertiesKazuki Fujikawa
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Yuya Unno
 
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東Yukiyoshi Sasao
 

Similar to PCAの最終形態GPLVMの解説 (20)

GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)
GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)
GPU-FPGA 協調計算を記述するためのプログラミング環境に関する研究(HPC169 No.10)
 
Subprocess no susume
Subprocess no susumeSubprocess no susume
Subprocess no susume
 
R言語勉強会#4.pdf
R言語勉強会#4.pdfR言語勉強会#4.pdf
R言語勉強会#4.pdf
 
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live![part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!
 
R intro
R introR intro
R intro
 
ラズパイでデバイスドライバを作ってみた。
ラズパイでデバイスドライバを作ってみた。ラズパイでデバイスドライバを作ってみた。
ラズパイでデバイスドライバを作ってみた。
 
20170127 JAWS HPC-UG#8
20170127 JAWS HPC-UG#820170127 JAWS HPC-UG#8
20170127 JAWS HPC-UG#8
 
Rの高速化
Rの高速化Rの高速化
Rの高速化
 
Pythonで体験する深層学習 5章
Pythonで体験する深層学習 5章Pythonで体験する深層学習 5章
Pythonで体験する深層学習 5章
 
R seminar on igraph
R seminar on igraphR seminar on igraph
R seminar on igraph
 
201209 Biopackathon 12th
201209 Biopackathon 12th201209 Biopackathon 12th
201209 Biopackathon 12th
 
深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開深層学習フレームワーク Chainer の開発と今後の展開
深層学習フレームワーク Chainer の開発と今後の展開
 
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
Jubatusのリアルタイム分散レコメンデーション@TokyoWebmining#17
 
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
夏のトップカンファレンス論文読み会 / Realtime Multi-Person 2D Pose Estimation using Part Affin...
 
PostgreSQLとpython
PostgreSQLとpythonPostgreSQLとpython
PostgreSQLとpython
 
GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust)
GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust) GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust)
GPGPU Seminar (GPU Accelerated Libraries, 3 of 3, Thrust)
 
Kaggle参加報告: Champs Predicting Molecular Properties
Kaggle参加報告: Champs Predicting Molecular PropertiesKaggle参加報告: Champs Predicting Molecular Properties
Kaggle参加報告: Champs Predicting Molecular Properties
 
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
Jubatusのリアルタイム分散レコメンデーション@TokyoNLP#9
 
CMSI計算科学技術特論A(14) 量子化学計算の大規模化1
CMSI計算科学技術特論A(14) 量子化学計算の大規模化1CMSI計算科学技術特論A(14) 量子化学計算の大規模化1
CMSI計算科学技術特論A(14) 量子化学計算の大規模化1
 
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
ArtTrack: Articulated Multi-Person Tracking in the Wild : CV勉強会関東
 

More from 弘毅 露崎

大規模テンソルデータに適用可能なeinsumの開発
大規模テンソルデータに適用可能なeinsumの開発大規模テンソルデータに適用可能なeinsumの開発
大規模テンソルデータに適用可能なeinsumの開発弘毅 露崎
 
バイオインフォ分野におけるtidyなデータ解析の最新動向
バイオインフォ分野におけるtidyなデータ解析の最新動向バイオインフォ分野におけるtidyなデータ解析の最新動向
バイオインフォ分野におけるtidyなデータ解析の最新動向弘毅 露崎
 
Benchmarking principal component analysis for large-scale single-cell RNA-seq...
Benchmarking principal component analysis for large-scale single-cell RNA-seq...Benchmarking principal component analysis for large-scale single-cell RNA-seq...
Benchmarking principal component analysis for large-scale single-cell RNA-seq...弘毅 露崎
 
scTGIFの鬼QC機能の追加
scTGIFの鬼QC機能の追加scTGIFの鬼QC機能の追加
scTGIFの鬼QC機能の追加弘毅 露崎
 
1細胞オミックスのための新GSEA手法
1細胞オミックスのための新GSEA手法1細胞オミックスのための新GSEA手法
1細胞オミックスのための新GSEA手法弘毅 露崎
 
Predicting drug-induced transcriptome responses of a wide range of human cell...
Predicting drug-induced transcriptome responses of a wide range of human cell...Predicting drug-induced transcriptome responses of a wide range of human cell...
Predicting drug-induced transcriptome responses of a wide range of human cell...弘毅 露崎
 
LRBase × scTensorで細胞間コミュニケーションの検出
LRBase × scTensorで細胞間コミュニケーションの検出LRBase × scTensorで細胞間コミュニケーションの検出
LRBase × scTensorで細胞間コミュニケーションの検出弘毅 露崎
 
非負値テンソル分解を用いた細胞間コミュニケーション検出
非負値テンソル分解を用いた細胞間コミュニケーション検出非負値テンソル分解を用いた細胞間コミュニケーション検出
非負値テンソル分解を用いた細胞間コミュニケーション検出弘毅 露崎
 
Exploring the phenotypic consequences of tissue specific gene expression vari...
Exploring the phenotypic consequences of tissue specific gene expression vari...Exploring the phenotypic consequences of tissue specific gene expression vari...
Exploring the phenotypic consequences of tissue specific gene expression vari...弘毅 露崎
 
データベースとデータ解析の融合
データベースとデータ解析の融合データベースとデータ解析の融合
データベースとデータ解析の融合弘毅 露崎
 
ビール砲の放ち方
ビール砲の放ち方ビール砲の放ち方
ビール砲の放ち方弘毅 露崎
 
Identification of associations between genotypes and longitudinal phenotypes ...
Identification of associations between genotypes and longitudinal phenotypes ...Identification of associations between genotypes and longitudinal phenotypes ...
Identification of associations between genotypes and longitudinal phenotypes ...弘毅 露崎
 
A novel method for discovering local spatial clusters of genomic regions with...
A novel method for discovering local spatial clusters of genomic regions with...A novel method for discovering local spatial clusters of genomic regions with...
A novel method for discovering local spatial clusters of genomic regions with...弘毅 露崎
 
Rによる統計解析と可視化
Rによる統計解析と可視化Rによる統計解析と可視化
Rによる統計解析と可視化弘毅 露崎
 
文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ
文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ
文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ弘毅 露崎
 
カーネル法を利用した異常波形検知
カーネル法を利用した異常波形検知カーネル法を利用した異常波形検知
カーネル法を利用した異常波形検知弘毅 露崎
 
ISMB読み会 2nd graph kernel
ISMB読み会 2nd graph kernelISMB読み会 2nd graph kernel
ISMB読み会 2nd graph kernel弘毅 露崎
 

More from 弘毅 露崎 (20)

大規模テンソルデータに適用可能なeinsumの開発
大規模テンソルデータに適用可能なeinsumの開発大規模テンソルデータに適用可能なeinsumの開発
大規模テンソルデータに適用可能なeinsumの開発
 
バイオインフォ分野におけるtidyなデータ解析の最新動向
バイオインフォ分野におけるtidyなデータ解析の最新動向バイオインフォ分野におけるtidyなデータ解析の最新動向
バイオインフォ分野におけるtidyなデータ解析の最新動向
 
Benchmarking principal component analysis for large-scale single-cell RNA-seq...
Benchmarking principal component analysis for large-scale single-cell RNA-seq...Benchmarking principal component analysis for large-scale single-cell RNA-seq...
Benchmarking principal component analysis for large-scale single-cell RNA-seq...
 
R-4.0の解説
R-4.0の解説R-4.0の解説
R-4.0の解説
 
scTGIFの鬼QC機能の追加
scTGIFの鬼QC機能の追加scTGIFの鬼QC機能の追加
scTGIFの鬼QC機能の追加
 
20191204 mbsj2019
20191204 mbsj201920191204 mbsj2019
20191204 mbsj2019
 
1細胞オミックスのための新GSEA手法
1細胞オミックスのための新GSEA手法1細胞オミックスのための新GSEA手法
1細胞オミックスのための新GSEA手法
 
Predicting drug-induced transcriptome responses of a wide range of human cell...
Predicting drug-induced transcriptome responses of a wide range of human cell...Predicting drug-induced transcriptome responses of a wide range of human cell...
Predicting drug-induced transcriptome responses of a wide range of human cell...
 
LRBase × scTensorで細胞間コミュニケーションの検出
LRBase × scTensorで細胞間コミュニケーションの検出LRBase × scTensorで細胞間コミュニケーションの検出
LRBase × scTensorで細胞間コミュニケーションの検出
 
非負値テンソル分解を用いた細胞間コミュニケーション検出
非負値テンソル分解を用いた細胞間コミュニケーション検出非負値テンソル分解を用いた細胞間コミュニケーション検出
非負値テンソル分解を用いた細胞間コミュニケーション検出
 
Exploring the phenotypic consequences of tissue specific gene expression vari...
Exploring the phenotypic consequences of tissue specific gene expression vari...Exploring the phenotypic consequences of tissue specific gene expression vari...
Exploring the phenotypic consequences of tissue specific gene expression vari...
 
データベースとデータ解析の融合
データベースとデータ解析の融合データベースとデータ解析の融合
データベースとデータ解析の融合
 
ビール砲の放ち方
ビール砲の放ち方ビール砲の放ち方
ビール砲の放ち方
 
Identification of associations between genotypes and longitudinal phenotypes ...
Identification of associations between genotypes and longitudinal phenotypes ...Identification of associations between genotypes and longitudinal phenotypes ...
Identification of associations between genotypes and longitudinal phenotypes ...
 
A novel method for discovering local spatial clusters of genomic regions with...
A novel method for discovering local spatial clusters of genomic regions with...A novel method for discovering local spatial clusters of genomic regions with...
A novel method for discovering local spatial clusters of genomic regions with...
 
Rによる統計解析と可視化
Rによる統計解析と可視化Rによる統計解析と可視化
Rによる統計解析と可視化
 
文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ
文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ
文献注釈情報MeSHを利用した網羅的な遺伝子の機能アノテーションパッケージ
 
カーネル法を利用した異常波形検知
カーネル法を利用した異常波形検知カーネル法を利用した異常波形検知
カーネル法を利用した異常波形検知
 
ISMB読み会 2nd graph kernel
ISMB読み会 2nd graph kernelISMB読み会 2nd graph kernel
ISMB読み会 2nd graph kernel
 
WACODE
WACODEWACODE
WACODE
 

PCAの最終形態GPLVMの解説