Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Integral

584 views

Published on

  • Be the first to comment

  • Be the first to like this

Integral

  1. 1. INTEGRALINTEGRAL TAK TENTUINTEGRAL TERTENTU
  2. 2. INTEGRAL TAK TENTU CONTOH : 1.∫ 3 dx = 3x + c 2.∫ 5 dt = 5t + c 3.∫ 8 dQ = 8Q + c4.∫ 56 du = 56 u + c
  3. 3. 2. ∫ ax b dx = a x b+1 + c b+1CONTOH :1.∫ 4X3 dx = 4 x 4 + c = x4 + c 42. ∫ 3x8 dx = 3 x 9 + c =1/3X9 + C 9
  4. 4. 3. ∫ aUb dU = a U b+1 + c b+1 U=f(x)CONTOH :1. ∫ (2X+ 1)dx = … 2. ∫ (4X + 4) dX = … -1 X2 + X (4X2+8X+6)3 4 (4x2+8x+6)2Jawab : jawab :Misal : U = X2 + X Misal : U =4X2+8X+6 dU =( 2X + 1)dX dU =(8X+8)dX ∫ (2X + 1)dx = ∫ dU dU =2(4X+4)dX X2 + X U dU =(4X+4)dX = Ln U + C 2 = Ln ( X2 + X ) + C ∫ dU = ∫ ½ U -3 dU 2U3 = ½.1/-2 .U-2 + C = - ¼(4X2+8X+6) -2 + C
  5. 5. 4.∫UdV = U.V - ∫VdU RUMUS DI ATAS ADALAHCONTOH : RUMUS INTEGRAL PARSIAL∫X.eX dx = ….Misal : U = X du = dx dv = eX dx V=∫eX dX = eX + C∫X.eX dx = U.V - ∫V dU = X.eX - ∫ eX dx = X.eX - eX + C
  6. 6. 5.∫ ex dx = ex + c6.∫[f(x) + g(x)] dx =∫ f(x)dx+∫g(x)dx 7.∫n.f(x)dx = n∫f(x)dx
  7. 7. SOALSELESAIKANLAH !1. ∫ X3 dX = … 6. ∫ √ 2 + 5X dX = …2. ∫X -4 dX = … 7.∫ (X2 + 3X + 4)3(2X + 3)dx =…3. ∫9X2 dX = … 8. ∫ X2 + 3X – 2 dX = …4. ∫5/X dX = … X5. ∫(X2 -√X + 4) dX = … 9. ∫X.e x² dX = …
  8. 8. INTEGRAL TERTENTUUNTUK a < c < b,berlaku b b b b1.∫ f(x) dx = [F(X)] = F(b)- F(a) 4. ∫ k f(x) dx =k ∫ f(x) dx a a a a a b b b 2.∫ f(x) dx = 0 5. ∫ [f(x) + g(x)]dx = ∫f(x)dx + ∫g(x)dx a a a a b a c b b3.∫ f(x) dx = - ∫ f(x) dx 6. ∫f(x)dx + ∫f(x)dx = ∫ f(x)dx a b a c a
  9. 9. SOAL 6 01.∫ X dX = …. 5. ∫ (X2 – 2X + 3) dX = … 4 3 3 32. ∫ (X2 – 2X + 3 ) dX = … 6. ∫ (2X + 1)(3 – X) dX = … 0 1 1 43. ∫ (2X + 5) dX = … 7. ∫ ( √ X – X )2 dX = … -1 1 -4 84. ∫ (3X2 + 2X) dX = … 8. ∫ (X1/3 – X-1/3) dX = ….. -6 1 2 2a9. ∫ (X + 9X3) dX = … 10. ∫ (a + X ) dX = … 1 a
  10. 10. BYAMIRULSYAH,MSi
  11. 11. SURPLUS KONSUMEN Fungsi demand Fungsi demand SK SK SKP1 Q Q O Q1 O P P
  12. 12. SURPLUS PRODUSEN P P SP P1 Fungsi supply SPP1 Fungsi supply Q QO Q1 O Q1
  13. 13. P P Fungsi demand SK SK Fungsi supply P1P1 SP SP Q O Q1 O Q 0 Q1
  14. 14. PENGETAHUAN DASARLUAS DAERAH Y CARA I : L= axt 2 5 L= 4x3 LUAS = …? 2 L= 6 satuan luas 2 X CARA II : Integral O 4 4 L= ∫(5-3/4x)dx – 2x4 CARA III: INTEGRAL 0 5 4 L=∫( 2 ) dy ² = (5X – ¾.1/2X )] - 8 0 Y= 5-3/4x = (5.4 – 3/8.16) – (5.0-1/4.0) – 8 X= 20/3 – 4y = (20 – 6) – 0 – 8 5 = 14 - 8 L = ∫ (20/3 – 4/3Y)dy = 6 satuan luas 2 L= 6 satuan luas
  15. 15. LUAS DAERAH P 6 CARA I: INTEGRAL 5 LUAS P= 6 – 3/25 Q ² L=∫ ( 6 – 3/25Q²)dQ – 3x5 3 0 5 0 Q 5 L = (6Q – 3/25.1/3Q³)] – 15 0 L = 10 satuan luas CARA II: INTEGRAL 6 L=∫ (50 – 25/3P)1/2 dP 3 6 L = { 2/3(50 – 25/3P)3/2.(-3/25)} ] 3 L = { - 2/5 (50 – 25/3P)3/2 L = 10 satuan luas
  16. 16. P LUAS= …? 2 P 2 Q 6 3 CARA II : INTEGRAL 6 2 ∫ L = 6X6 - (2 + 2/3Q)dQ Q 0 6 0 6 { L = 36 – 2Q + 2/3.1/2Q² }] 0CARA I : RUMUS L = 36 – 24 = 12 satuan luasL = axt 2 CARA III : integralL= 4x6 6 2 ∫ L = ( 3/2 P – 3 ) dPL = 12 satuan luas 2 6 L = ( 3/4P – 3P ) ] = 9 + 3 = 12 satuan luas 2
  17. 17. LUAS DAERAH P P = 2 + 1/5Q²7 CARA I : INTEGRAL LUAS 52 L = 7x5 - ∫( 2 + 1/5Q²)dQ Q 0 50 5 ] L = 35 - (2Q + 1/5.1/3Q³) 0 L = 35 - 10 - 8 1/3 CARA II : INTEGRAL L = 16 ⅔ satuan luas 7 ∫ L = (5P - 10)1/2 dP 2 7 L = { 2/3(5P - 10) 3/2. ⅕ }] 2 L = 2/15.{ 25 } 3/2 L = 16 ⅔ satuan luas
  18. 18. P P = 5 + 1/12Q21.Fungsi pendapatan 2. 12 dari suatu pabrik diberikan sebagai berikut : LUAS I 8 R = 6 + 350Q – 2Q2 LUAS IIFungsi produksinya : P = 12 - 1/9Q2 Q = 3L 5Jika jumlah tenaga Q kerja yang ada 25 0 6 orang,berapakah MPRL dan jelaskan artinya .
  19. 19. 6 P P = 5 + 1/12Q2Luas I = ∫(12 - 1/9Q2)dQ - 8X6 2. 12 0 6= ( 12Q + 1/9.1/3Q3) ] - 48 0 LUAS I= (12.6 + 1/27.63 – (12.0 + 8 1/27.03) - 48 LUAS II P = 12 - 1/9Q2= (72 + 1/27.216 – 0) - 48 5= (72 + 8 – 0) - 48 Q 0 6= 80 – 48= 32
  20. 20. 6 P P = 12 - 1/9Q2Luas II = 6X8 - ∫(5 + 1/12Q2)dQ 2. 0 12 6= 48 – ( 5Q + 1/12.1/3Q3) ] 0 LUAS I= 48 – (5.6 + 1/36.63 – (5.0 + 8 1/36.03) LUAS II P = 5 + 1/12Q2= 48 – (30 + 1/36.216 – 0) 5= 48 - (30 + 6 - 0) Q 0 6= 48 – 36= 12
  21. 21. 1.Fungsi pendapatan dari suatu pabrik diberikan sebagai berikut : R = 6 + 350Q – 2Q2Fungsi produksinya : Q = 3LJika jumlah tenaga kerja yang ada 25 orang,berapakah MPRL dan jelaskan artinya .Jawab :R = 6 + 350Q - 2Q² Q = 3LdR = 350 – 4Q dQ = 3dQ dL MPRL = dR = dR . dQ dL dQ dL = (350 – 4Q).3 L = 25 Q =3L = 75 dR = (350 – 300).3 = 175 dLArtinya: Untuk setiap penambahan Tenaga Kerja sebanyak 25 orang akan menyebabkan penambahan pendapatan sebanyak 175 ,dan sebaliknya

×