Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Antenna

1,710 views

Published on

Published in: Technology, Business
  • Be the first to comment

Antenna

  1. 1. Presentation<br />Antenna Engineering<br />In Topic<br />Design Of Square Patch Microstrip Antenna for<br />Circular Polarization Using IE3D Software<br />
  2. 2. By<br />Mr. Anon Mosuwan 51-3506-016-7<br /> &<br />Mr. PratanSrikamonpattanawut51-3506-030-8 <br />ENET R-41<br />
  3. 3. Abstract<br /> Communication between humans was first by sound through voice. With the desire for slightly more distance communication came, devices such as drums, then, visual methods such as signal flags and smoke signals were used. These optical communication devices, of course, utilized the light portion of the electromagnetic spectrum. It has been only very recent in human history that the electromagnetic spectrum, outside the visible region, has been employed for communication, through the use of radio. One of humankind’s greatest natural resources is the electromagnetic spectrum and the antenna has been instrumental in harnessing this resource.<br />
  4. 4. Aim and Objective<br />Microstrip patch antenna used to send onboard parameters of article to the ground while under operating conditions. The aim of the report is to design and fabricate a probe-fed Square Microstrip Patch Antenna and study the effect of antenna dimensions Length (L),and substrate parameters relative Dielectric constant (εr), substrate thickness (t) on the radiation parameters of Bandwidth and Beam-width.<br />
  5. 5. Design of Square Patch Microstrip Antenna for Circular Polarization using IE3D Simulator<br />Given specifications were,<br />1. Dielectric constant (εr) = 2.55<br />2. Frequency (fr) = 3.0 GHz.<br />3. Height (h) = 1/16 Inch = 1.59 mm.<br />4. Velocity of light (c) = 3×108 ms-1 .<br />5. Practical width (W) , W = 30 mm.<br />6. Loss Tangent (tan δ) = 0.001.<br />7. Practical Length (L) L = 30 mm.<br />
  6. 6. 1. Start Zeland Program Manager.<br />
  7. 7. 2. Click on M-Grid().<br />
  8. 8. 3. Go to File>>>New and then press ()<br />
  9. 9. 4. Define Substrate Parameters and then click “OK”<br />
  10. 10. 5. Click “OK” again for go to M-Grid window<br />
  11. 11. 6. Click on Entity >>> Rectangle .<br />
  12. 12. 7. Define the parameter follow below figure<br />
  13. 13. 8. After step 7. you will see this figure<br />
  14. 14. 9. Press “shift+A “ for define X and Y coordinate of Probe feed <br />
  15. 15. 10. After 9 step you’ll see this below figure<br />
  16. 16. 11. Press “shift+A “ again for define second X and Y coordinate of Probe feed <br />
  17. 17. 12. After 11 step you’ll see this below figure<br />
  18. 18. 13. Go to Entity >>> Probe-Feed to Patch<br />
  19. 19. 14. Define the parameter follow below figure<br />
  20. 20. 15. You’ll see this below figure<br />
  21. 21. 16. Go to Process >>> Simulate… and then define the parameter follow this below figure<br />
  22. 22. 17. Enter Frequency Rang for simulate<br />
  23. 23. 18. After 17 step the window will show this below figure and then click “OK” for start the simulation<br />
  24. 24. 19. After the simulation S parameter dB[s(1,1)]<br />
  25. 25. 20. After the simulation S parameter dB[s(2,2)]<br />
  26. 26. 21. After the simulation VSWR Port 1<br />
  27. 27. 22. After the simulation VSWR Port 2<br />
  28. 28. 23. After the simulation Smith Chart S(1,1)<br />
  29. 29. 24. After the simulation Smith Chart S(2,2)<br />
  30. 30. 25. After the simulation Current Distribution<br />
  31. 31. 26. After the simulation Elevation Pattern Gain Display<br />
  32. 32. 27. After the simulation Total Field Gain vs. Frequency<br />
  33. 33. 28. After the simulation Axial-Ratio vs. Frequency<br />
  34. 34. Comparison when change Dielectric constant (εr) from 2.55 to be 10<br />
  35. 35. 1. Comparison S(1,1) Parameter<br />Before<br />After<br />
  36. 36. 2. Comparison S(2,2) Parameter<br />Before<br />After<br />
  37. 37. Before<br />After<br />3. Comparison VSWR port 1<br />
  38. 38. Before<br />After<br />4. Comparison VSWR port 2<br />
  39. 39. Before<br />After<br />5. Comparison Smith Chart S(1,1)<br />
  40. 40. Before<br />After<br />6. Comparison Smith Chart S(2,2)<br />
  41. 41. Before<br />After<br />7. Comparison 3D Distribution<br />
  42. 42. Before<br />After<br />8. Comparison Elevation Pattern Gain Display<br />
  43. 43. Before<br />After<br />9. Comparison Total Field Gain vs. Frequency<br />
  44. 44. Before<br />After<br />10. Comparison Axial-Ratio vs. Frequency<br />
  45. 45. Comparison when change Practical width (W) from 30 mm to be 60 mm andPractical Length (L)from 30 mm to be 60 mm <br />
  46. 46. 1. Comparison S(1,1) Parameter<br />Before<br />After<br />
  47. 47. 2. Comparison S(2,2) Parameter<br />Before<br />After<br />
  48. 48. Before<br />After<br />3. Comparison VSWR port 1<br />
  49. 49. Before<br />After<br />4. Comparison VSWR port 2<br />
  50. 50. Before<br />After<br />5. Comparison Smith Chart S(1,1)<br />
  51. 51. Before<br />After<br />6. Comparison Smith Chart S(2,2)<br />
  52. 52. Before<br />After<br />7. Comparison 3D Distribution<br />
  53. 53. Before<br />After<br />8. Comparison Elevation Pattern Gain Display<br />
  54. 54. Before<br />After<br />9. Comparison Total Field Gain vs. Frequency<br />
  55. 55. Before<br />After<br />10. Comparison Axial-Ratio vs. Frequency<br />
  56. 56. Question ?<br />
  57. 57. Thank you for attention our presentation <br />(^_^)<br />

×