Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Cdma Anjan V1

4,613 views

Published on

Published in: Technology, Business
  • Be the first to comment

Cdma Anjan V1

  1. 1. Elementary Concepts, Standards And CDMA Anjan.K III Sem M.Tech Dept Of CSE M.S.R.I.T 10/03/09 MC: Elementary Concepts and CDMA
  2. 2. Agenda <ul><li>Mobile Standards </li></ul><ul><li>Different Generations </li></ul><ul><li>CDMA </li></ul><ul><ul><li>Need for CDMA Technology </li></ul></ul><ul><ul><li>cdmaOne IS-95 Architecture </li></ul></ul><ul><ul><ul><li>Features </li></ul></ul></ul><ul><ul><li>IS 95 Vs 2G systems </li></ul></ul><ul><ul><li>3G Vision </li></ul></ul><ul><ul><li>Migrating to 3G </li></ul></ul><ul><ul><li>CDMA 2000 </li></ul></ul><ul><ul><ul><li>Architecture </li></ul></ul></ul><ul><ul><li>WCDMA </li></ul></ul><ul><ul><li>TD-SCDMA </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  3. 3. International Standardization <ul><li>ITU (International Telecommunication Union) </li></ul><ul><ul><li>Radio standards and spectrum </li></ul></ul><ul><li>IMT-2000 </li></ul><ul><ul><li>ITU’s umbrella name for 3G which stands for International Mobile Telecommunications 2000 </li></ul></ul><ul><li>National and regional standards bodies are collaborating in 3G partnership projects </li></ul><ul><ul><li>ARIB, TIA, TTA, TTC, CWTS. T1, ETSI - refer to reference slides at the end for names and links </li></ul></ul><ul><li>3G Partnership Projects (3GPP & 3GPP2) </li></ul><ul><ul><li>Focused on evolution of access and core networks </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  4. 4. IMT-2000 Radio Standards <ul><li>IMT-SC* Single Carrier (UWC-136): EDGE </li></ul><ul><ul><li>GSM evolution (TDMA); 200 KHz channels; sometimes called “2.75G” </li></ul></ul><ul><li>IMT-MC* Multi Carrier CDMA: CDMA2000 </li></ul><ul><ul><li>Evolution of IS-95 CDMA, i.e. cdmaOne </li></ul></ul><ul><li>IMT-DS* Direct Spread CDMA: W-CDMA </li></ul><ul><ul><li>New from 3GPP; UTRAN FDD </li></ul></ul><ul><li>IMT-TC** Time Code CDMA </li></ul><ul><ul><li>New from 3GPP; UTRAN TDD </li></ul></ul><ul><ul><li>New from China; TD-SCDMA </li></ul></ul><ul><li>IMT-FT** FDMA/TDMA (DECT legacy) </li></ul>10/03/09 MC: Elementary Concepts and CDMA * Paired spectrum; ** Unpaired spectrum
  5. 5. 10/03/09 MC: Elementary Concepts and CDMA
  6. 6. Mobile Standards Organizations <ul><li>European Technical Standard Institute (Europe): </li></ul><ul><ul><li>http://www.etsi.org </li></ul></ul><ul><li>Telecommunication Industry Association (USA): </li></ul><ul><ul><li>http://www.tiaonline.org </li></ul></ul><ul><li>Standard Committee T1 (USA): </li></ul><ul><ul><li>http://www.t1.org </li></ul></ul><ul><li>China Wireless Telecommunication Standard (China): </li></ul><ul><ul><li>http://www.cwts.org </li></ul></ul><ul><li>The Association of Radio Industries and Businesses (Japan): </li></ul><ul><ul><li>http://www.arib.or.jp/arib/english/ </li></ul></ul><ul><li>The Telecommunication Technology Committee (Japan): </li></ul><ul><ul><li>http://www.ttc.or.jp/e/index.html </li></ul></ul><ul><li>The Telecommunication Technology Association (Korea): </li></ul><ul><ul><li>http://www.tta.or.kr/english/e_index.htm </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  7. 7. First Generation <ul><li>Advanced Mobile Phone Service (AMPS) </li></ul><ul><ul><li>US trials 1978; deployed in Japan (’79) & US (’83) </li></ul></ul><ul><ul><li>800 MHz band — two 20 MHz bands </li></ul></ul><ul><ul><li>TIA-553 </li></ul></ul><ul><ul><li>Still widely used in US and many parts of the world </li></ul></ul><ul><li>Nordic Mobile Telephony (NMT) </li></ul><ul><ul><li>Sweden, Norway, Demark & Finland </li></ul></ul><ul><ul><li>Launched 1981; now largely retired </li></ul></ul><ul><ul><li>450 MHz; later at 900 MHz (NMT900) </li></ul></ul><ul><li>Total Access Communications System (TACS) </li></ul><ul><ul><li>British design; similar to AMPS; deployed 1985 </li></ul></ul><ul><ul><li>Some TACS-900 systems still in use in Europe </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  8. 8. Second Generation — 2G <ul><li>Digital systems </li></ul><ul><li>Leverage technology to increase capacity </li></ul><ul><ul><li>Speech compression; digital signal processing </li></ul></ul><ul><li>Utilize/extend “Intelligent Network” concepts </li></ul><ul><li>Improve fraud prevention </li></ul><ul><li>Add new services </li></ul><ul><li>There are a wide diversity of 2G systems </li></ul><ul><ul><li>IS-54/ IS-136 North American TDMA; PDC (Japan) </li></ul></ul><ul><ul><li>iDEN </li></ul></ul><ul><ul><li>DECT and PHS </li></ul></ul><ul><ul><li>IS-95 CDMA (cdmaOne) </li></ul></ul><ul><ul><li>GSM </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  9. 9. Need for CDMA Technology <ul><li>Higher capacity </li></ul><ul><li>Improved performance in multipath by diversity </li></ul><ul><li>Lower mobile transmit power = longer battery life </li></ul><ul><ul><li>Power control </li></ul></ul><ul><ul><li>Variable transmission rate with voice activity detection </li></ul></ul><ul><li>Allows soft handoff </li></ul><ul><li>Sectorization gain </li></ul><ul><li>High peak data rates can be accommodated </li></ul><ul><li>Combats other-user interference = lower reuse factors </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  10. 10. CDMA???? <ul><li>Both an access method and air-interface </li></ul><ul><li>Rest of the network is very similar </li></ul><ul><ul><li>Radio resource management, mobility management, security are similar </li></ul></ul><ul><ul><li>Power control and handoffs are different </li></ul></ul><ul><li>Uses DSSS and ECC </li></ul><ul><li>Frequency reuse factor is 1 </li></ul><ul><li>Three CDMA systems </li></ul><ul><ul><li>IS-95 2G </li></ul></ul><ul><ul><li>CDMA2000 </li></ul></ul><ul><ul><li>W-CDMA </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  11. 11. CDMA Analogy <ul><li>10 people in a room. </li></ul><ul><ul><li>5 speak English, 2 speak Spanish, 2 speak Chinese, and 1 speaks Russian. </li></ul></ul><ul><li>Everyone is talking at relatively the same time over the same medium – the air. </li></ul><ul><li>Who can listen to whom and why? </li></ul><ul><li>Who can’t you understand? </li></ul><ul><li>Who can’t speak to anyone else? </li></ul>
  12. 12. CDMA Standards - IS-95 <ul><li>TIA standard Interim Standard (IS) -95 (ANSI-95) in 1993 </li></ul><ul><li>IS-95 deployed in the 800 MHz cellular band </li></ul><ul><ul><li>J-STD-08 variant deployed in 1900 MHz US “PCS” band </li></ul></ul><ul><li>Evolution fixes bugs and adds data </li></ul><ul><ul><li>IS-95A provides data rates up to 14.4 kbps </li></ul></ul><ul><ul><li>IS-95B provides rates up to 64 kbps (2.5G) </li></ul></ul><ul><ul><li>Both A and B are compatible with J-STD-08 </li></ul></ul><ul><li>All variants designed for TIA IS-41 core networks (ANSI 41) </li></ul><ul><li>CDMA was first commercialized by its founder </li></ul><ul><li>A.J Verterbi at Qualcomm in 1995. </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  13. 13. CDMA Standards - IS-95A <ul><li>IS-95A is the CDMA-based second generation (2G) standard for mobile communication. The following are the key aspects of this standard: </li></ul><ul><ul><li>Support for data rates of upto 14.4 kbps </li></ul></ul><ul><ul><li>IS-95A has been used exclusively for circuit-switched voice </li></ul></ul><ul><ul><li>Convolutional Channel coding used </li></ul></ul><ul><ul><li>Modulation technique used is BPSK </li></ul></ul>
  14. 14. CDMA Standards - IS-95B <ul><li>IS-95B is the evolved version of IS-95A and is designated as 2.5G. </li></ul><ul><li>IS-95B maintains the Physical Layer of IS-95A, but due to an enhanced MAC layer, is capable of providing for higher speed data services. The following are the key aspects of the standard: </li></ul><ul><ul><li>Theoretical data rates of upto 115 kbps, with generally experienced rates of 64 kbps </li></ul></ul><ul><ul><li>Additional Walsh codes and PN sequence masks, which enable a mobile user to be assigned up to eight forward or reverse code channels simultaneously, thus enabling a higher data rate </li></ul></ul><ul><ul><li>Code channels, which are transmitted at full data rates during a data burst </li></ul></ul><ul><ul><li>Convolutional Channel coding </li></ul></ul><ul><ul><li>Binary Phase Shift Keying (BPSK) as the Modulation technique used </li></ul></ul>
  15. 15. IS-95 CDMA Features-(1) <ul><li>Bandwidth Recycling </li></ul><ul><ul><li>Enhancing the system capacity due to the increase of reuse efficiency. </li></ul></ul><ul><ul><li>Achieving higher bandwidth efficiency (interference limited) and simplifying the system planning. </li></ul></ul><ul><ul><li>Achieving flexibility due to the bandwidth on demand. </li></ul></ul><ul><li>Power Control </li></ul><ul><ul><li>Reducing the interference and increasing the talk time of mobile </li></ul></ul><ul><li>station by using the efficient power control scheme. </li></ul><ul><li>Soft handoffs </li></ul><ul><ul><li>Contributing to the achievement of the diversity and reduce the </li></ul></ul><ul><li>chance of loss of link midway through the conversation. </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  16. 16. IS-95 CDMA Features-(2) <ul><li>Diversity </li></ul><ul><ul><li>Taking advantage of multiple levels of diversity: frequency diversity (spreading), spatial diversity (multiple antennas), path diversity (rake receiver) and time diversity (block interleaver), all of which reduce the interference and improve speech quality. </li></ul></ul><ul><li>Variable Rate Vocoder </li></ul><ul><ul><li>Offering high speed coding and reducing background noise and system interference based on the detection of the voice activity. </li></ul></ul><ul><li>Coding Technique </li></ul><ul><ul><li>Enhancing the privacy and security. </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  17. 17. IS-95 Vs 2G Phone Systems 10/03/09 MC: Elementary Concepts and CDMA
  18. 18. IS – 95 Vocoders <ul><li>AMR: Adaptive multi-rate </li></ul><ul><ul><li>Defined for UMTS (W-CDMA) </li></ul></ul><ul><ul><li>Being retrofitted for GSM </li></ul></ul><ul><li>SMV: Selectable mode vocoder </li></ul><ul><ul><li>Defined by 3GPP2 for CDMA2000 </li></ul></ul><ul><li>Many available coding rates </li></ul><ul><ul><li>AMR 8 rates: 12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 5.15 & 4.75bps, plus silence frames (near 0 bps) </li></ul></ul><ul><ul><li>SMV 4 rates: 8.5, 4, 2 & 0.8kbps </li></ul></ul><ul><li>Lower bit rates allow more error correction </li></ul><ul><ul><li>Dynamically adjust to radio interference conditions </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  19. 19. Frequency Allocation GSM Vs CDMA 10/03/09 MC: Elementary Concepts and CDMA
  20. 20. 10/03/09 MC: Elementary Concepts and CDMA
  21. 21. Mathematical Background – (1) <ul><li>Multiple users occupying the same band by having different codes is known as CDMA - Code Division Multiple Access system </li></ul><ul><li>Let </li></ul><ul><li>W - spread bandwidth in Hz </li></ul><ul><li>R = 1/T b = Date Rate </li></ul><ul><li>S - received power of the desired signal in W </li></ul><ul><li>J - received power for undesired signals like multiple access users, multipath, jammers etc in W </li></ul><ul><li>E b - received energy per bit for the desired signal in W </li></ul><ul><li>N 0 - equivalent noise spectral density in W/Hz </li></ul>
  22. 22. Mathematical Background – (2) What is the tolerable interference over desired signal power?
  23. 23. Mathematical Background – (3) <ul><li>In conventional systems W/R  1 which means, for satisfactory operation J/S < 1 </li></ul><ul><li>Example Let R = 9600; W = 1.2288 MHz </li></ul><ul><li>(E b /N 0 ) min = 6 dB (values taken from IS-95) </li></ul><ul><li>Jamming margin (JM) = 10log 10 (1.2288*10 6 /9.6*10 3 ) - 6 </li></ul><ul><li> = 15.1 dB  32 </li></ul><ul><li>This antijam margin or JM arises from Processing Gain (PG) = W/R = 128 </li></ul><ul><li>If (E b /N 0 ) min is further decreased or PG is increased, JM can be further increased </li></ul>
  24. 24. Mathematical Background – (4) <ul><li>JM can be used to accommodate multiple users in the same band </li></ul><ul><li>If (E b /N 0 ) min and PG is fixed, number of users is maximized if perfect power control is employed. </li></ul><ul><li>Capacity of a CDMA system is proportional to PG. </li></ul>
  25. 25. Spreading Codes <ul><li>A noise-like and random signal has to be generated at the transmitter. </li></ul><ul><li>The same signal must be generated at the receiver in synchronization. </li></ul><ul><li>We limit the complexity by specifying only one bit per sample, i.e., a binary sequence. </li></ul>
  26. 26. Desirable Randomness Properties <ul><li>Relative frequencies of “0” and “1” should be ½ (Balance property) </li></ul><ul><li>Run lengths of zeros and ones should be (Run property): </li></ul><ul><ul><li>Half of all run lengths should be unity </li></ul></ul><ul><ul><li>One - quarter should be of length two </li></ul></ul><ul><ul><li>One - eighth should be of length three </li></ul></ul><ul><ul><li>A fraction 1/2 n of all run lengths should be of length n for all finite n </li></ul></ul>
  27. 27. Desirable Randomness Properties (contd…) <ul><li>If the random sequence is shifted by any nonzero </li></ul><ul><li>number of elements, the resulting sequence </li></ul><ul><li>should have an equal number of agreements and </li></ul><ul><li>disagreements with the original sequence </li></ul><ul><li>(Autocorrelation property) </li></ul>
  28. 28. PN Sequences <ul><li>A deterministically generated sequence that nearly satisfies these properties is referred to as a Pseudorandom Sequence (PN) </li></ul><ul><li>Periodic binary sequences can be conveniently generated using linear feedback shift registers (LFSR) </li></ul><ul><li>If the number of stages in the LFSR is r, P  2 r - 1 where P is the period of the sequence </li></ul>
  29. 29. PN Sequences (contd…) <ul><li>However, if the feedback connections satisfy a specific property, P = 2 r - 1. Then the sequence is called a Maximal Length Shift Register (MLSR) or a PN sequence. </li></ul><ul><li>Thus if r=15, P=32767. </li></ul><ul><li>MLSR satisfies the randomness properties stated before </li></ul>
  30. 30. Randomness Properties of PN Sequences <ul><li>Balance property - Of the 2 r - 1 terms, 2 r-1 are one and 2 r-1 –1 are zero. Thus the unbalance is 1/P. For r=50; 1/P  10 -15 </li></ul><ul><li>Run length property - Relative frequency of run length n (zero or ones) is 1/ 2 n for n  r-1 and 1/(2 r - 1) for n = r </li></ul><ul><li>One run length each of r-1 zeros and r ones occurs. There are no run lengths for n > r </li></ul><ul><li>Autocorrelation property - The number of disagreements exceeds the number of agreements by unity. Thus again the discrepancy is 1/p </li></ul>
  31. 31. PN Sequences Specified in IS-95 <ul><li>A “long” PN sequence (r =42) is used to scramble the user data with a different code shift for each user </li></ul><ul><li>The 42-degree characteristic polynomial is given by: </li></ul><ul><ul><li>x 42 +x 41 +x 40 +x 39 +x 37 +x 36 +x 35 +x 32 +x 26 +x 25 +x 24 +x 23 +x 21 +x 20 +x 17 +x 16 +x 15 +x 11 +x 9 +x 7 +1 </li></ul></ul><ul><li>The period of the long code is 2 42 - 1  4.4*10 2 chips and lasts over 41 days </li></ul>
  32. 32. PN Sequences Specified in IS-95 (contd…) <ul><li>A short PN sequence (r = 15) is specific to a base station and its period is (2 15 −1)Tc = 27ms. </li></ul><ul><li>Two “short” PN sequences (r=15) are used to spread the quadrature components of the forward and reverse link waveforms </li></ul>
  33. 33. Walsh Code <ul><li>There are some issues with Walsh Codes </li></ul><ul><ul><li>Synchronization of all users is required </li></ul></ul><ul><ul><li>In a multipath channel, delayed copies may be received which are not orthogonal any longer! </li></ul></ul><ul><ul><li>Only J codes exist with a bandwidth expansion of J, so as far as capacity, we are right back where we started with TDMA and FDMA! </li></ul></ul><ul><li>Advantages relative to TDMA and FDMA </li></ul><ul><ul><li>No guard bands or guard times are typically required </li></ul></ul><ul><ul><li>No equalizer is typically required, when a RAKE receiver is used </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  34. 34. Spread Spectrum <ul><li>A modulation system in which the modulated (spread spectrum) signal bandwidth is much greater than the message signal bandwidth. </li></ul><ul><li>The spectral spreading is performed by a code that is independent of the message signal. The same code is used at receiver to de spread the received signal and to recover the message signal. </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  35. 35. Advantages of Spread Spectrum <ul><li>It is Secure, difficult to intercept </li></ul><ul><li>A large number of codes can support a large number of users </li></ul><ul><li>As a large bandwidth is used the system is less prone to distortion </li></ul><ul><li>Resistant to jamming </li></ul><ul><li>Asynchronous multiple access technology </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  36. 36. Types Of Spread Spectrum <ul><li>Direct Sequence Spread Spectrum </li></ul><ul><li>Frequency Hoping </li></ul><ul><li>Hybrid System </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  37. 37. Direct Sequence Spread Sprectrum <ul><li>DS-SS is one popular way to make the noise-like waveforms for CDMA </li></ul><ul><li>Maximal-length shift registers make binary sequences that have noise-like properties </li></ul><ul><li>n-stage shift register produces a sequence with a period of length 2 n -1. </li></ul><ul><li>Codes for different users </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  38. 38. 10/03/09 MC: Elementary Concepts and CDMA
  39. 39. CDMA Forward Link <ul><li>The forward link uses the same frequency spectrum as AMPS (824-849 Mhz) . Each carrier 1.25MHz </li></ul><ul><li>Four types of logical channel </li></ul><ul><ul><li>Pilot, </li></ul></ul><ul><ul><li>Synchronization, </li></ul></ul><ul><ul><li>7 Paging, and </li></ul></ul><ul><ul><li>55 Traffic channels </li></ul></ul><ul><li>Channels are separated using different spreading codes </li></ul><ul><li>QPSK is the modulation scheme </li></ul><ul><li>Orthogonal Walsh codes are used (64 total) </li></ul><ul><li>After orthogonal codes, they are further spread by short PN spreading codes </li></ul><ul><li>Short PN spreading codes are M sequences generated by LFSRs of length 15 with a period of 32768 chips. </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  40. 40. CDMA MUX 10/03/09 MC: Elementary Concepts and CDMA Copyright © Data Communication and Networking By Behrouz A Forozan
  41. 41. CDMA Reverse Channel <ul><li>Fundamentally different from the forward channels </li></ul><ul><li>Uses OQPSK for power efficiency </li></ul><ul><li>QPSK demodulation is easy </li></ul><ul><li>869-894 MHz range. </li></ul><ul><li>No spreading of the data using orthogonal codes </li></ul><ul><li>Same orthogonal codes are used for WAVEFORM encoding </li></ul><ul><li>Two types of logical channels: </li></ul><ul><ul><li>Access channels </li></ul></ul><ul><ul><li>Reverse traffic channels </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  42. 42. CDMA DeMUX 10/03/09 MC: Elementary Concepts and CDMA Copyright © Data Communication and Networking By Behrouz A Forozan
  43. 43. 3G Vision <ul><li>Universal global roaming </li></ul><ul><li>Multimedia (voice, data & video) </li></ul><ul><li>Increased data rates </li></ul><ul><ul><li>384 kbps while moving </li></ul></ul><ul><ul><li>2 Mbps when stationary at specific locations </li></ul></ul><ul><li>Increased capacity (more spectrally efficient) </li></ul><ul><li>IP architecture </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  44. 44. 10/03/09 MC: Elementary Concepts and CDMA
  45. 45. IS 95 to CDMA 2000 3G Evolution 10/03/09 MC: Elementary Concepts and CDMA
  46. 46. CDMA2000 <ul><li>Evolution from original Qualcomm CDMA </li></ul><ul><li>Better migration story from 2G to 3G </li></ul><ul><ul><li>cdmaOne operators don’t need additional spectrum </li></ul></ul><ul><ul><li>1xEVD0 promises higher data rates than UMTS, i.e. W-CDMA </li></ul></ul><ul><li>Better spectral efficiency </li></ul><ul><li>CDMA2000 core network less mature </li></ul><ul><ul><li>cdmaOne interfaces were vendor-specific </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  47. 47. 10/03/09 MC: Elementary Concepts and CDMA
  48. 48. W-CDMA <ul><li>Wideband CDMA </li></ul><ul><ul><li>Standard for Universal Mobile Telephone Service (UMTS) </li></ul></ul><ul><li>Committed standard for Europe and likely migration path for other GSM operators </li></ul><ul><ul><li>Leverages GSM’s dominant position </li></ul></ul><ul><li>Requires substantial new spectrum </li></ul><ul><ul><li>5 MHz each way (symmetric) </li></ul></ul><ul><li>Legally mandated in Europe and elsewhere </li></ul><ul><li>Sales of new spectrum completed in Europe </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  49. 49. Need For WCDMA <ul><li>WCDMA is a step further in the CDMA technology. </li></ul><ul><ul><li>Uses a 5 MHz wide radio signal and </li></ul></ul><ul><ul><li>chip rate of 3.84 Mcps, which is about three times higher than the chip rate of CDMA2000 (1.22 Mcps) </li></ul></ul><ul><ul><li>QPSK Modulation </li></ul></ul><ul><li>Migration from 3G to 4G </li></ul><ul><li>Higher spectrum efficiency </li></ul><ul><li>Higher QoS </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  50. 50. W-CDMA Vs cdma2000 10/03/09 MC: Elementary Concepts and CDMA
  51. 51. TD-SCDMA <ul><li>Time division duplex (TDD) </li></ul><ul><li>Chinese development - deployed in China </li></ul><ul><li>Good match for asymmetrical traffic! </li></ul><ul><li>Single spectral band (1.6 MHz) possible </li></ul><ul><li>Costs relatively low </li></ul><ul><ul><li>Handset smaller and may cost less </li></ul></ul><ul><ul><li>Power consumption lower </li></ul></ul><ul><ul><li>TDD has the highest spectrum efficiency </li></ul></ul><ul><li>Power amplifiers must be very linear </li></ul><ul><ul><li>Relatively hard to meet specifications </li></ul></ul><ul><li>35MHz for downlink and uplink </li></ul>10/03/09 MC: Elementary Concepts and CDMA
  52. 52. Rake Receiver <ul><li>Mobile station receives multiple attenuated and delayed replicas of the original signal (multipath diversity channels). </li></ul><ul><li>Two multipath signals are resolvable only if their relative delay exceeds the chip period Tc </li></ul><ul><li>Amplitudes and phases of multipath components are found by correlating the received waveform with multiple delayed versions of the signal (delay = nTc). </li></ul><ul><li>Searcher performs the above task for up to 3 different multipath signals. </li></ul><ul><li>3 parallel demodulators (RAKE fingers) isolate the multipath components and the RAKE receiver combines them. </li></ul>
  53. 53. Summary <ul><li>Different mobile standard organization ITU, IMT 2000, TIA, IS </li></ul><ul><li>CDMA </li></ul><ul><ul><li>IS 95 , IS95A,IS95B </li></ul></ul><ul><ul><li>Codes –Walsh,Autocorrelation, PN </li></ul></ul><ul><ul><li>Rake Receiver </li></ul></ul><ul><ul><li>Forward and Reverse Link </li></ul></ul><ul><ul><li>CDMA 2000 </li></ul></ul><ul><ul><li>WCDMA </li></ul></ul>10/03/09 MC: Elementary Concepts and CDMA
  54. 54. References <ul><li>[1] T. S. Rappaport, “Wireless communications </li></ul><ul><li>principles&practice”, Prentice Hall, 1996 </li></ul><ul><li>[2] C. Y. Lin and J. Shieh, “IS-95 North American </li></ul><ul><li>standard-a CDMA based digital cellular system”, IEEE </li></ul><ul><li>Website. </li></ul><ul><li>[3] A. J. Viterbi, “CDMA principles of spread spectrum </li></ul><ul><li>communication”, Addison-Wesley Publishing Company, 1995. </li></ul><ul><li>[4] R. Paul and K. V. Shah, “An objective comprison of second </li></ul><ul><li>generation cellular systems - GSM, IS-136 and IS-95”, IEEE, 1997. </li></ul><ul><li>[5] Dr.V.K Ananthashayana , “Lecture Notes on CDMA” </li></ul><ul><li>[6] Motorola, Inc. “CDMA Technology & Benefits: An </li></ul><ul><li>introduction to the benefits of CDMA for wireless </li></ul><ul><li>technology”, 1996. </li></ul>

×