By:
Yugal Garg
Robin Philip
Prashant Kumar
Shiwani Raghav
Aamir Altaf
Tanvi Agarwal
WHAT IS AN ARITHMETIC
       PROGRESSION?


AN ARITHMETIC PROGRESSION (A.P.)
IS A LIST OF NUMBERS IN WHICH
EACH TERM IS OB...
THE GENERAL FORM OF AN A.P. IS :
       a , a+d , a+2d , a+3d , . . .


THE nth TERM an OF THE ARITHMETIC PROGRESSION
WITH...
S

1    a
2    a+d
3    a+d+d
4    a+d+d+d
5    a+d+d+d+d
6    a+d+d+d+d+d
7    a+d+d+d+d+d+d
8    a+d+d+d+d+d+d+d
9    a+...
S
 d+d+d+d+d+d+d+d+d+a
.   d+ d + d + d + d + d + d + d + a
       d+d+d+d+d+d+d+a
           d+d+d+d+d+d+a
              ...
S +               S         = 2S

1     a        d+d+d+d+d+d+d+d+d+a
2    a+d         d+ d + d + d + d + d + d + d + a
3  ...
S +       S            = 2S
a+      d+d+d+d+d+d+d+d+d    +a
a+      d+d+d+d+d+d+d+d+d    +a
a+      d+d+d+d+d+d+d+d+d    +...
S +           S       = 2S
               d+d+d+d+d+d+d+d+d
a+             d+d+d+d+d+d+d+d+d    +a
a+             d+d+d+d+...
S

a
a+ d
a+ d +   d
a+ d +   d+d
a+ d +   d+d+d
a+ d +   d+d+d+d
..
..
..

a + d + d + d + d + d+ d +d+……d[(n-1)times]
s
(n-1) times d+…d+d+d+d+d+a
                        ..
                        ..
                        ..
            ...
S +                S         = 2S
                    [(n-1) times] d …   d+d+d+d+d+d+a
a                                 ...
S +                      S         = 2S
                      d    +   d+   d+   d ……...+ (n-1)d
  a+                     ...
Method to calculate the sum of an arithmetic progression when
the first and the last terms are known:


We know that the s...
Acknowledgement

1. Dr. Sanjeev Agrawal
2. Dr. Amber Habib
3. Niteesh Sahni
4. Shivani Wadehra
5. Sanat Upadhyay
6. Manish...
BIBLIOGRAPHY
The information and the images for the PowerPoint
presentation on ARITHMETIC PROGRESSIONS has been taken
from...
Error Correction College
Upcoming SlideShare
Loading in …5
×

Error Correction College

853 views

Published on

ARITHMETIC PROGRESSIONS: AN ARITHMETIC PROGRESSION (A.P.)
IS A LIST OF NUMBERS IN WHICH
EACH TERM IS OBTAINED BY ADDING
WHAT IS AN ARITHMETIC
PROGRESSION?
A FIXED NUMBER d TO THE
PRECEDING TERM, EXCEPT THE
FIRST TERM. THE FIXED NUMBER d IS
CALLED THE COMMON DIFFERENCE.

Published in: Education
2 Comments
1 Like
Statistics
Notes
No Downloads
Views
Total views
853
On SlideShare
0
From Embeds
0
Number of Embeds
235
Actions
Shares
0
Downloads
0
Comments
2
Likes
1
Embeds 0
No embeds

No notes for slide

Error Correction College

  1. 1. By: Yugal Garg Robin Philip Prashant Kumar Shiwani Raghav Aamir Altaf Tanvi Agarwal
  2. 2. WHAT IS AN ARITHMETIC PROGRESSION? AN ARITHMETIC PROGRESSION (A.P.) IS A LIST OF NUMBERS IN WHICH EACH TERM IS OBTAINED BY ADDING A FIXED NUMBER d TO THE PRECEDING TERM, EXCEPT THE FIRST TERM. THE FIXED NUMBER d IS CALLED THE COMMON DIFFERENCE.
  3. 3. THE GENERAL FORM OF AN A.P. IS : a , a+d , a+2d , a+3d , . . . THE nth TERM an OF THE ARITHMETIC PROGRESSION WITH FIRST TERM a AND COMMON DIFFERENCE d IS GIVEN BY: an = a + (n - 1) d an IS ALSO CALLED THE GENERAL TERM OF THE ARITHMETIC PROGRESSION. IF THERE ARE m TERMS IN THE ARITHMETIC PROGRESSION , THEN am REPRESENTS THE LAST TERM WHICH CAN BE DENOTED BY l.
  4. 4. S 1 a 2 a+d 3 a+d+d 4 a+d+d+d 5 a+d+d+d+d 6 a+d+d+d+d+d 7 a+d+d+d+d+d+d 8 a+d+d+d+d+d+d+d 9 a+d+d+d+d+d+d+d+d 10 a+d+d+d+d+d+d+d+d+d
  5. 5. S d+d+d+d+d+d+d+d+d+a . d+ d + d + d + d + d + d + d + a d+d+d+d+d+d+d+a d+d+d+d+d+d+a d+d+d+d+d+a d+d+d+d+a d+d+d+a d+d+a d+a a
  6. 6. S + S = 2S 1 a d+d+d+d+d+d+d+d+d+a 2 a+d d+ d + d + d + d + d + d + d + a 3 a+d+d d+d+d+d+d+d+d+a 4 a+d+d+d d+d+d+d+d+d+a 5 a+d+d+d+d d+d+d+d+d+a 6 a+d+d+d+d+d d+d+d+d+a 7 a+d+d+d+d+d+d d+d+d+a 8 a+d+d+d+d+d+d+d d+d+a 9 a+d+d+d+d+d+d+d+d d+a 10 a+d+d+d+d+d+d+d+d+d a
  7. 7. S + S = 2S a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a
  8. 8. S + S = 2S d+d+d+d+d+d+d+d+d a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+ d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ d+d+d+d+d+d+d+d+d +a a+ +a 2S= 10a+ (10x9) d +10a ……………………………… 2S = 10a+90d+10a 2S = 20a+90d S = 10a+45d S = 5 x (2a+9d) S = 10 x [2a+(10-1)d] 2
  9. 9. S a a+ d a+ d + d a+ d + d+d a+ d + d+d+d a+ d + d+d+d+d .. .. .. a + d + d + d + d + d+ d +d+……d[(n-1)times]
  10. 10. s (n-1) times d+…d+d+d+d+d+a .. .. .. d+d+d+d+a d+d+d+a d+d+a d+a a
  11. 11. S + S = 2S [(n-1) times] d … d+d+d+d+d+d+a a .. a+ d .. a+ d + d .. a+ d + d+d a+ d + d+d+d d+d+d+d+a a+ d + d+d+d+d d+d+d+a .. d+d+a .. d+a .. a a + d + d + d + d + d+ d +d+…d[(n- 1)times]
  12. 12. S + S = 2S d + d+ d+ d ……...+ (n-1)d a+ +a …(1) d + d+ d+ d ………+ (n-1)d a+ +a …(2) d + d+ d+ d ………+ (n-1)d a+ +a a+ d + d+ d+ d ………+ (n-1)d .. +a .. .. .. .. .. d + d + d + d ………+ (n-1)d a+ +a ..(nth eqn) 2S= na + (n)(n-1) d + na 2S = na +(n)(n-1)d + na 2S = 2na + (n)(n-1)d S = na + (n)(n-1)d 2 S = n[2a + (n-1)d] 2
  13. 13. Method to calculate the sum of an arithmetic progression when the first and the last terms are known: We know that the sum of an arithmetic progression is given by: S = n [ 2a + (n-1)d ] 2 S = n [ a + a + (n-1)d ] 2 We know that the last term l can be written as [ a + (n-1)d ] Therefore S=n[a+l] 2
  14. 14. Acknowledgement 1. Dr. Sanjeev Agrawal 2. Dr. Amber Habib 3. Niteesh Sahni 4. Shivani Wadehra 5. Sanat Upadhyay 6. Manisha Bhardwaj 7. Zia Ur Rahman 8. Charu Sharma 9. Ajaz Ahmed 10.Reyaz Ahmed
  15. 15. BIBLIOGRAPHY The information and the images for the PowerPoint presentation on ARITHMETIC PROGRESSIONS has been taken from: 1) MATHS NCERT FOR CLASS X 2) www.google/images.com 3) digital-photography-school.com 4) photoshop-manic.blogspot.com

×