Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.

Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.

Like this presentation? Why not share!

- Factor theorem solving cubic equations by Ang Choon Cheng 15822 views
- Remainder and Factor Theorem by Trish Hammond 479 views
- Factor theorem by Ang Choon Cheng 1733 views
- Factorization using factor theorem by Amey Kaithwas 102 views
- Remainder theorem by Nicole Avillano 262 views
- 2 2 synthetic division, remainder &... by hisema01 499 views

No Downloads

Total views

11,867

On SlideShare

0

From Embeds

0

Number of Embeds

66

Shares

0

Downloads

0

Comments

0

Likes

2

No embeds

No notes for slide

- 1. Polynomials and Partial Fractions In this lesson, you will learn that the factor theorem is a special case of the remainder theorem and use it to find factors of polynomials. 4.5 Factor Theorem Objectives
- 2. In the previous lesson, we saw that the Remainder Theorem can be used to find the remainder when a polynomial is divided by a linear divisor. We will use the factor theorem to find factors of polynomials. Polynomials and Partial Fractions The Factor Theorem is a special case of the Remainder Theorem when the remainder is zero: We also say that P( x ) is exactly divisible by x – a.
- 3. Since P(2) ≠ 0 Polynomials and Partial Fractions By the factor theorem, x + 1 is a factor of P( x ) Substitute for – 1 in P( x ). By the factor theorem, x – 2 is not a factor of P( x ). Substitute for 2 in P( x ). Example .
- 4. Equate coefficients to find the third factor. Polynomials and Partial Fractions Factorise the quadratic equation. Multiply the second equation by 16 and subtract. P(4) = 0; P( – 1) = 0. Substitute x = 4 and x = – 1. Example
- 5. Polynomials and Partial Fractions In this lesson, you will learn to apply the factor theorem to solving cubic equations of the form px 3 + qx 2 + rx + s = 0, where p , q , r and s are constants. 4.6 Solving Cubic Equations Objectives
- 6. We know how to solve linear equations and quadratic equations. We will use the factor theorem to help solve cubic equations. Polynomials and Partial Fractions Cubic equations can be solved by first applying the Factor Theorem to find one of the factors and then reducing the equation to a quadratic equation.
- 7. Polynomials and Partial Fractions By the factor theorem, x – 1 is a factor of P( x ) a = 3, – 1 × c = – 2 so c = 2 A cubic is a linear factor times a quadratic. choose α = 1 Since P(1) = 0 Equate coefficients of x 9 = – 1 × b + 2 b = – 7 Factorise the quadratic equation Example
- 8. a = 1, – 2 × c = 6 so c = – 3 Polynomials and Partial Fractions By the factor theorem, x – 2 is a factor of P( x ) A cubic is a linear factor times a quadratic – α × c = 6 so α is a factor of 6 choose α = 2 Since P(2) = 0 Equate coefficients of x 1 = – 2 × b – 3 b = – 2 Factorise the quadratic Example

No public clipboards found for this slide

×
### Save the most important slides with Clipping

Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.

Be the first to comment