SlideShare a Scribd company logo
1 of 1
Download to read offline
Inferential protein structure determination using
chemical shifts derived from quantum mechanics
Anders S. Christensen, Troels E. Linnet, Mikael Borg, Wouter Boomsma, Kresten
Lindorff-Larsen, Thomas Hamelryck, Jan H. Jensen
Hybrid RHF/MP2 geometry optimizations in the
Effective Fragment Molecular Orbital Method
Anders S. Christensen, Casper Steinmann, Dmitri G. Fedorov, Jan H. Jensen
andersx@nano.ku.dk
EFMO-RHF:MP2 geometry
optimizations
Energy of a molecular system in the effective fragment
potential:
EEFMO
=
I
E0
I +
RIJ≤Rresdim
I>J


∆E0
IJ − EPOL
IJ



+
RIJ>Rresdim
I>J
EES
+ EPOL
tot . (1)
In the Frozen Domain approximation:
EEFMO
= E0
F + E0
A + E0
F/A + EPOL
tot , (2)
Figure 1: The geometry of the F layer is frozen during
optimization. The active layer A is optimized the RHF
level, except for the S fragment at MP2.
This gives the EFMO-RHF:MP2 energy:
EEFMO−RHF:MP2
= E0,RHF
F + E0,RHF
A + E0,RHF
F/A (3)
+EPOL
tot + E0,MP2
S∈A , (4)
with the gradient(implemented in GAMESS):
∂EEFMO-RHF:MP2
∂xA
=
∂EEFMO
∂xA
+
∂EMP2
S∈A
∂xA
(5)
Results and discussions
OH
O
O O-
O
O-
O
O-
O
O
O-
HO
OH
O
O
O-
-
O
O
1
4
2
3 3
2
1
4
1
4
3
2
1 2 3
Figure 2: Claisen rearrangement of prephanate to choris-
mate.
Table 1: Electronic energy barrier for the conversion
of prephanate to chorismate in Chorismate Mutase and
the corresponding reaction coordinate for the transition
state using EFMO-RHF:MP2 or ONIOM-RHF:MP2 (from
Steinmann et al).
Method MP2 basis R(TS) Barrier
[kcal/mol]
EFMO 6-31G(d) -0.17 Å 20.95
EFMO cc-pVDZ -0.43 Å 19.21
EFMO cc-pVTZ -0.43 Å 18.34
ONIOM 6-31G(d) 0.13 Å 22.24
ONIOM cc-pVDZ -0.36 Å 19.75
ONIOM cc-pVTZ 0.13 Å 21.79
ONIOM cc-pVQZ 0.13 Å 21.68
Acknowlegements
Collaboration:
Jan H. Jensen (KU/Chem), Casper Steinmann (SDU),
Dimitri G. Fedorov (IAST/Japan)
Inferential protein structure
determination
Calculating protein chemical shifts
Protein chemical shifts can be approximated as:
δ = ∆δBB(φ, ψ, {χn}) + ∆δHB + ∆δRC (6)
where δBB(φ, ψ, {χn}) is a term that depends on the tor-
sion angles, ∆δHB is a sum that depends on the local
hydrogen bonding network, and ∆δRC describes perturba-
tion from ring-currents in nearby aromatic residues. The
individual terms are parametrized from nearly 1,000,000
QM calculations and implemented in the open-source
ProCS program (part of the PHAISTOS frame work).
Sampling protein structures
Protein structures are sampled from a Bayesian posterior
distribution:
p (X| {δexp
i } , I) =
p ({δexp
i } |X, I) p (X|I)
p ({δexp
i } , I)
(7)
which relates the sampled structure, X to a set of mea-
sured experimental chemical shifts, {δexp
i }, and other prior
information, I (e.g. amino acid sequence, etc).
Calculating likelihood
The agreement between a structure X and a set of mea-
sured experimental chemical shifts, {δexp
i }, is calculated
using a Gaussian error model:
p ({δexp
i } |X, {σi}) =
n
i=1











1
2πσ2
i
exp −
(∆δi)2
2σ2
i











, (8)
where ∆δi is the difference between experimental chemical
shifts for the i’th nucleus and the chemical shifts calcu-
lated using Eq. 6. σi denotes the uncertainty of the pre-
dicted value of δi. Our program supports the QM based
ProCS model and the empirical CamShift model.
p (X|I) can be evaluated using a molecular mechanics
force field energy, EFF:
p (X|I) = exp −
EFF
kBT
(9)
Our program supports the OPLS/AA-L force field with a
GB/SA solvent model, and the corse-grained PROFASI
force field.
Results and discussions
Folding of Protein G (56 residues) takes less than a day
with the developed code.
Figure 3: Protein G, from unfolded to folded state. The
blue structure is the experimental NMR structure (PDB:
2OED), and green are snapshots from sampling using the
OPLS-AA/L force field with a GB/SA solvent model and
chemical shifts from CamShift.
Average hydrogen bond length in three proteins
Figure 4: Structures are sampled using the OPLS-AA/L
force field with a GB/SA solvent model and amide proton
chemical shifts from either ProCS or CamShift. Structures
sampled with ProCS show better agreement with exper-
imental data than structures sampled using CamShift or
no chemical shift restraints.
Acknowlegements
Funding:
Novo Nordisk STAR Program
Collaboration and students:
Jan H. Jensen (KU/Chem), Thomas Hamelryck
(KU/Binf), Jens Breinholt (Novo), Kresten Lindorff-
Larsen (KU/NMR), Stephan P. A. Sauer (KU/Chem),
Anders Larsen (KU/Nano), Maher Channir (KU/Nano),
Lars Brathol (KU/Nano), Wouter Boomsma (KU/Binf),
Simon Olsson (KU/Binf), Mikael Borg (KU/Binf)
References
[1] Steinmann C, Fedorov D G, Jensen J H (2010) Effective
fragment molecular orbital method: A merger of the effective
fragment potential and fragment molecular orbital methods. J
Phys Chem A 114:8705-8712.
[2] Hybrid RHF/MP2 geometry optimizations with the Effective
Fragment Molecular Orbital Method (2013) Christensen A S,
Steinmann C, Fedorov D G, Jensen JH arXiv preprint
arXiv:1305.0676
[3] Steinmann C, Fedorov D G, Jensen J H (2013) Mapping
Enzymatic Catalysis using the Effective Fragment Molecular
Orbital Method: Towards all ab initio Biochemistry. PLoS ONE
8(4): e60602.
[4] Christensen A S, Linnet T E, Borg M, Boomsma W,
Lindorf-Larsen K, Hamelryk T, Jensen J H (2013) Protein
structure validation and refinement using amide proton
chemical shifts derived from quantum mechanics PLOS ONE,
accepted arXiv:1305.2164
[5] Boomsma W, et al. (2013) PHAISTOS: A Framework for
Markov Chain Monte Carlo Simulation and Inference of Protein
Structure J Comp Chem (in press, DOI: 10.1002/jcc.23292).
(QR link to this poster)
Blog: http://combichem.blogspot.com/
ESQC, September 2013, Italy

More Related Content

What's hot

SIMONA CAVALU_Rotational Correlation Times of proteins
SIMONA CAVALU_Rotational Correlation Times of proteinsSIMONA CAVALU_Rotational Correlation Times of proteins
SIMONA CAVALU_Rotational Correlation Times of proteinsSimona Cavalu
 
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-6502014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650Konstantin German
 
Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)
Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)
Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)CSCJournals
 
QSAR : Activity Relationships Quantitative Structure
QSAR : Activity Relationships Quantitative StructureQSAR : Activity Relationships Quantitative Structure
QSAR : Activity Relationships Quantitative StructureSaramita De Chakravarti
 
Introduction to Quantitative Structure Activity Relationships
Introduction to Quantitative Structure Activity RelationshipsIntroduction to Quantitative Structure Activity Relationships
Introduction to Quantitative Structure Activity RelationshipsOmar Sokkar
 
Dielectrics in a time-dependent electric field: density-polarization functi...
Dielectrics in a time-dependent electric field:   density-polarization functi...Dielectrics in a time-dependent electric field:   density-polarization functi...
Dielectrics in a time-dependent electric field: density-polarization functi...Claudio Attaccalite
 
Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)Khalid El Hasnaoui
 
Quantitative structure activity relationships
Quantitative structure  activity relationshipsQuantitative structure  activity relationships
Quantitative structure activity relationshipsAmiya ghosh
 
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...Josemar Pereira da Silva
 
published articles-Navamani
published articles-Navamanipublished articles-Navamani
published articles-NavamaniNavamani K
 

What's hot (20)

SIMONA CAVALU_Rotational Correlation Times of proteins
SIMONA CAVALU_Rotational Correlation Times of proteinsSIMONA CAVALU_Rotational Correlation Times of proteins
SIMONA CAVALU_Rotational Correlation Times of proteins
 
01 05 j_chem_phys_123_074102
01 05 j_chem_phys_123_07410201 05 j_chem_phys_123_074102
01 05 j_chem_phys_123_074102
 
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-6502014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
2014 terachem-nuclear medicine and biology, v. 41, is. 7, p. 547-650
 
Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)
Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)
Ije v4 i2International Journal of Engineering (IJE) Volume (3) Issue (5)
 
Descriptors
DescriptorsDescriptors
Descriptors
 
Qsar parameter
Qsar parameterQsar parameter
Qsar parameter
 
QSAR
QSARQSAR
QSAR
 
QSAR : Activity Relationships Quantitative Structure
QSAR : Activity Relationships Quantitative StructureQSAR : Activity Relationships Quantitative Structure
QSAR : Activity Relationships Quantitative Structure
 
POSTER 2013.ppt
POSTER 2013.pptPOSTER 2013.ppt
POSTER 2013.ppt
 
Introduction to Quantitative Structure Activity Relationships
Introduction to Quantitative Structure Activity RelationshipsIntroduction to Quantitative Structure Activity Relationships
Introduction to Quantitative Structure Activity Relationships
 
Dielectrics in a time-dependent electric field: density-polarization functi...
Dielectrics in a time-dependent electric field:   density-polarization functi...Dielectrics in a time-dependent electric field:   density-polarization functi...
Dielectrics in a time-dependent electric field: density-polarization functi...
 
Lanjutan kimed
Lanjutan kimedLanjutan kimed
Lanjutan kimed
 
Virendra
VirendraVirendra
Virendra
 
Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)Khalid elhasnaoui DR Version final (groupe LPPPC)
Khalid elhasnaoui DR Version final (groupe LPPPC)
 
Quantitative structure activity relationships
Quantitative structure  activity relationshipsQuantitative structure  activity relationships
Quantitative structure activity relationships
 
Qsar UMA
Qsar   UMAQsar   UMA
Qsar UMA
 
Qsar
QsarQsar
Qsar
 
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
1 s2.0-s037838121100207 x-main.correlation of thermodynamic modeling and mole...
 
published articles-Navamani
published articles-Navamanipublished articles-Navamani
published articles-Navamani
 
Qsar
QsarQsar
Qsar
 

Similar to ESQC 2013 Poster - Anders Christensen

Quantum pharmacology. Basics
Quantum pharmacology. BasicsQuantum pharmacology. Basics
Quantum pharmacology. BasicsMobiliuz
 
David Minh Brief Stories 2017 Sept
David Minh Brief Stories 2017 SeptDavid Minh Brief Stories 2017 Sept
David Minh Brief Stories 2017 SeptSciCompIIT
 
The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...
The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...
The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...Haley D. Norman
 
Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)Atai Rabby
 
293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016Ibrahim Abdel-Rahman
 
VASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdfVASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdfDrSyedZulqarnainHaid
 
2015 New trans-stilbene derivatives with large TPA values
2015 New trans-stilbene derivatives with large TPA values2015 New trans-stilbene derivatives with large TPA values
2015 New trans-stilbene derivatives with large TPA valuesvarun Kundi
 
Poster presentat a les jornades doctorals de la UAB
Poster presentat a les jornades doctorals de la UABPoster presentat a les jornades doctorals de la UAB
Poster presentat a les jornades doctorals de la UABElisabeth Ortega
 
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinoneDaniel Teoh Tan
 
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen  Fuel CellRoom-Temperature DNA-Catalyzed Hydrogen  Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cellcclarbl
 
3rd Gen. OLED -- TADF
3rd Gen. OLED -- TADF3rd Gen. OLED -- TADF
3rd Gen. OLED -- TADFChris Huang
 
Qualitative and dft analysis of endiynes
Qualitative and  dft analysis of endiynes Qualitative and  dft analysis of endiynes
Qualitative and dft analysis of endiynes Dr Robert Craig PhD
 
Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...
Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...
Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...iosrjce
 
Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...
Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...
Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...inventionjournals
 
Main_Ms_JBNMR_Final_version
Main_Ms_JBNMR_Final_versionMain_Ms_JBNMR_Final_version
Main_Ms_JBNMR_Final_versionAbhilash Kannan
 

Similar to ESQC 2013 Poster - Anders Christensen (20)

paper 2
paper 2paper 2
paper 2
 
Quantum pharmacology. Basics
Quantum pharmacology. BasicsQuantum pharmacology. Basics
Quantum pharmacology. Basics
 
David Minh Brief Stories 2017 Sept
David Minh Brief Stories 2017 SeptDavid Minh Brief Stories 2017 Sept
David Minh Brief Stories 2017 Sept
 
The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...
The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...
The Assembly, Structure and Activation of Influenza a M2 Transmembrane Domain...
 
9
99
9
 
Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)Quantative Structure-Activity Relationships (QSAR)
Quantative Structure-Activity Relationships (QSAR)
 
1-s2.0-S0022286014012551-main
1-s2.0-S0022286014012551-main1-s2.0-S0022286014012551-main
1-s2.0-S0022286014012551-main
 
acs.jpca.9b08723.pdf
acs.jpca.9b08723.pdfacs.jpca.9b08723.pdf
acs.jpca.9b08723.pdf
 
293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016293-JMES-2247-Ellouz-Publishe Paper-July 2016
293-JMES-2247-Ellouz-Publishe Paper-July 2016
 
VASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdfVASP-lecture-Hybrids functionals LDA GFGA.pdf
VASP-lecture-Hybrids functionals LDA GFGA.pdf
 
2015 New trans-stilbene derivatives with large TPA values
2015 New trans-stilbene derivatives with large TPA values2015 New trans-stilbene derivatives with large TPA values
2015 New trans-stilbene derivatives with large TPA values
 
Poster presentat a les jornades doctorals de la UAB
Poster presentat a les jornades doctorals de la UABPoster presentat a les jornades doctorals de la UAB
Poster presentat a les jornades doctorals de la UAB
 
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
5-Chloro-8-hydroxy-6-methyl-1,4-naphthoquinone
 
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen  Fuel CellRoom-Temperature DNA-Catalyzed Hydrogen  Fuel Cell
Room-Temperature DNA-Catalyzed Hydrogen Fuel Cell
 
3rd Gen. OLED -- TADF
3rd Gen. OLED -- TADF3rd Gen. OLED -- TADF
3rd Gen. OLED -- TADF
 
Qualitative and dft analysis of endiynes
Qualitative and  dft analysis of endiynes Qualitative and  dft analysis of endiynes
Qualitative and dft analysis of endiynes
 
Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...
Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...
Experimental (FT-IR, UV-visible, NMR) spectroscopy and molecular structure, g...
 
Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...
Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...
Antibacterial Activity of Schiff Bases Derived from OrthoDiaminocyclohexane, ...
 
Main_Ms_JBNMR_Final_version
Main_Ms_JBNMR_Final_versionMain_Ms_JBNMR_Final_version
Main_Ms_JBNMR_Final_version
 
Cnt Tm
Cnt TmCnt Tm
Cnt Tm
 

ESQC 2013 Poster - Anders Christensen

  • 1. Inferential protein structure determination using chemical shifts derived from quantum mechanics Anders S. Christensen, Troels E. Linnet, Mikael Borg, Wouter Boomsma, Kresten Lindorff-Larsen, Thomas Hamelryck, Jan H. Jensen Hybrid RHF/MP2 geometry optimizations in the Effective Fragment Molecular Orbital Method Anders S. Christensen, Casper Steinmann, Dmitri G. Fedorov, Jan H. Jensen andersx@nano.ku.dk EFMO-RHF:MP2 geometry optimizations Energy of a molecular system in the effective fragment potential: EEFMO = I E0 I + RIJ≤Rresdim I>J   ∆E0 IJ − EPOL IJ    + RIJ>Rresdim I>J EES + EPOL tot . (1) In the Frozen Domain approximation: EEFMO = E0 F + E0 A + E0 F/A + EPOL tot , (2) Figure 1: The geometry of the F layer is frozen during optimization. The active layer A is optimized the RHF level, except for the S fragment at MP2. This gives the EFMO-RHF:MP2 energy: EEFMO−RHF:MP2 = E0,RHF F + E0,RHF A + E0,RHF F/A (3) +EPOL tot + E0,MP2 S∈A , (4) with the gradient(implemented in GAMESS): ∂EEFMO-RHF:MP2 ∂xA = ∂EEFMO ∂xA + ∂EMP2 S∈A ∂xA (5) Results and discussions OH O O O- O O- O O- O O O- HO OH O O O- - O O 1 4 2 3 3 2 1 4 1 4 3 2 1 2 3 Figure 2: Claisen rearrangement of prephanate to choris- mate. Table 1: Electronic energy barrier for the conversion of prephanate to chorismate in Chorismate Mutase and the corresponding reaction coordinate for the transition state using EFMO-RHF:MP2 or ONIOM-RHF:MP2 (from Steinmann et al). Method MP2 basis R(TS) Barrier [kcal/mol] EFMO 6-31G(d) -0.17 Å 20.95 EFMO cc-pVDZ -0.43 Å 19.21 EFMO cc-pVTZ -0.43 Å 18.34 ONIOM 6-31G(d) 0.13 Å 22.24 ONIOM cc-pVDZ -0.36 Å 19.75 ONIOM cc-pVTZ 0.13 Å 21.79 ONIOM cc-pVQZ 0.13 Å 21.68 Acknowlegements Collaboration: Jan H. Jensen (KU/Chem), Casper Steinmann (SDU), Dimitri G. Fedorov (IAST/Japan) Inferential protein structure determination Calculating protein chemical shifts Protein chemical shifts can be approximated as: δ = ∆δBB(φ, ψ, {χn}) + ∆δHB + ∆δRC (6) where δBB(φ, ψ, {χn}) is a term that depends on the tor- sion angles, ∆δHB is a sum that depends on the local hydrogen bonding network, and ∆δRC describes perturba- tion from ring-currents in nearby aromatic residues. The individual terms are parametrized from nearly 1,000,000 QM calculations and implemented in the open-source ProCS program (part of the PHAISTOS frame work). Sampling protein structures Protein structures are sampled from a Bayesian posterior distribution: p (X| {δexp i } , I) = p ({δexp i } |X, I) p (X|I) p ({δexp i } , I) (7) which relates the sampled structure, X to a set of mea- sured experimental chemical shifts, {δexp i }, and other prior information, I (e.g. amino acid sequence, etc). Calculating likelihood The agreement between a structure X and a set of mea- sured experimental chemical shifts, {δexp i }, is calculated using a Gaussian error model: p ({δexp i } |X, {σi}) = n i=1            1 2πσ2 i exp − (∆δi)2 2σ2 i            , (8) where ∆δi is the difference between experimental chemical shifts for the i’th nucleus and the chemical shifts calcu- lated using Eq. 6. σi denotes the uncertainty of the pre- dicted value of δi. Our program supports the QM based ProCS model and the empirical CamShift model. p (X|I) can be evaluated using a molecular mechanics force field energy, EFF: p (X|I) = exp − EFF kBT (9) Our program supports the OPLS/AA-L force field with a GB/SA solvent model, and the corse-grained PROFASI force field. Results and discussions Folding of Protein G (56 residues) takes less than a day with the developed code. Figure 3: Protein G, from unfolded to folded state. The blue structure is the experimental NMR structure (PDB: 2OED), and green are snapshots from sampling using the OPLS-AA/L force field with a GB/SA solvent model and chemical shifts from CamShift. Average hydrogen bond length in three proteins Figure 4: Structures are sampled using the OPLS-AA/L force field with a GB/SA solvent model and amide proton chemical shifts from either ProCS or CamShift. Structures sampled with ProCS show better agreement with exper- imental data than structures sampled using CamShift or no chemical shift restraints. Acknowlegements Funding: Novo Nordisk STAR Program Collaboration and students: Jan H. Jensen (KU/Chem), Thomas Hamelryck (KU/Binf), Jens Breinholt (Novo), Kresten Lindorff- Larsen (KU/NMR), Stephan P. A. Sauer (KU/Chem), Anders Larsen (KU/Nano), Maher Channir (KU/Nano), Lars Brathol (KU/Nano), Wouter Boomsma (KU/Binf), Simon Olsson (KU/Binf), Mikael Borg (KU/Binf) References [1] Steinmann C, Fedorov D G, Jensen J H (2010) Effective fragment molecular orbital method: A merger of the effective fragment potential and fragment molecular orbital methods. J Phys Chem A 114:8705-8712. [2] Hybrid RHF/MP2 geometry optimizations with the Effective Fragment Molecular Orbital Method (2013) Christensen A S, Steinmann C, Fedorov D G, Jensen JH arXiv preprint arXiv:1305.0676 [3] Steinmann C, Fedorov D G, Jensen J H (2013) Mapping Enzymatic Catalysis using the Effective Fragment Molecular Orbital Method: Towards all ab initio Biochemistry. PLoS ONE 8(4): e60602. [4] Christensen A S, Linnet T E, Borg M, Boomsma W, Lindorf-Larsen K, Hamelryk T, Jensen J H (2013) Protein structure validation and refinement using amide proton chemical shifts derived from quantum mechanics PLOS ONE, accepted arXiv:1305.2164 [5] Boomsma W, et al. (2013) PHAISTOS: A Framework for Markov Chain Monte Carlo Simulation and Inference of Protein Structure J Comp Chem (in press, DOI: 10.1002/jcc.23292). (QR link to this poster) Blog: http://combichem.blogspot.com/ ESQC, September 2013, Italy