Train for Success TalkIntelligence Training<br />Robert Daniel<br />SL: QuinceyDagger<br />May 26, 2011<br />
Introduction<br />Adjunct Professor at GWU<br />10 Teaching Telecommunications<br />SecondLife 4 years<br />OpenSim for th...
FVWC 2011<br />Theme: Artificial Intelligence <br />Must be an AI related entry<br />Entries must be in a virtual environm...
Intelligence Training<br />Our approach to the contest<br />Apply as many existing AI concepts to a Virtual World<br />Neu...
Intelligence Training<br />Our approach to the contest<br />We picked 6 AI Concepts<br />1. Weak AI<br />AIML Artificial I...
Intelligence Training<br />Theme: Intelligence Training<br />HUMINT: Human Intelligence Training<br />OSINT: Open Source I...
Intelligence Training<br />Theme: Mapped INTs to AI<br />Station 1 <br />HUMINT: Intelligent Chat Bots<br />Weak AI with A...
Station 1: HUMIT Avatar<br />AI: AI Markup Language<br /><ul><li>In-world Intelligent Chat Bots</li></ul>Using AIML<br />O...
Station 2: HUMIT Avatar<br />AI: Text To Speech<br /><ul><li>In-world Intelligent Chat Bots</li></ul>Using AIML<br />FreeS...
Station 3: OSINT Avatar<br />AI: Text To Speech<br /><ul><li>In-world Intelligent German Chat Bots</li></ul>Using German A...
Station 4: GEOSINT Objects<br />AI: Boids (artificial life Program)<br /><ul><li>In-world UAV Swarms</li></li></ul><li>Sta...
Station 6: SIGINT Workstation<br />AI: AI MATLAB Toolkit<br /><ul><li>In-world  Speech Processing</li></ul>Using MATLAB<br...
What’s Next<br />External Interfaces<br /><ul><li>Xbox Kinect</li></li></ul><li>What’s Next<br />External Interfaces<br />...
Intelligence Training, Robert Daniel
Intelligence Training, Robert Daniel
Upcoming SlideShare
Loading in …5
×

Intelligence Training, Robert Daniel

1,632 views

Published on

Robert Daniel will present the first place winner of the AI Concept Exploration category of the Federal Virtual Worlds Challenge. Intelligence training concepts incorporate AI solutions into gathering HUMINT, GEOINT, SIGINT and OSINT. HUMINT uses text to speech / speech to text and Google translate to simulate an intelligence agent looking for information on a topic by interacting with several persons of interest and questioning multilingual intelligent avatar bots. GEOINT uses swarm concepts to control the in-world environment, such as wind, rain and sand storms, including wildlife tracking and generation, such as flocks of birds, packs of dogs and schools of fish. Also includes swarms of UAVs and ground robots as geospatially aware entities. SIGINT includes voice analysis of in-world voice chat and conferences for fraud detection. It is a 3D visualization front end for AI-based plug-ins for time and frequency analyses of in-world voice chat. OSINT uses web bots to extract real world data for in-world user experience enhancement pulling from sources such as wikipedia, YouTube, Twitter and other social networking sites. Other cool functionality presented includes in-world/out-world calling using landlines and cell phones using; conference calling between worlds; and ground robot random walk to find and diffuse IDEs.

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,632
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Intelligence Training, Robert Daniel

  1. 1. Train for Success TalkIntelligence Training<br />Robert Daniel<br />SL: QuinceyDagger<br />May 26, 2011<br />
  2. 2. Introduction<br />Adjunct Professor at GWU<br />10 Teaching Telecommunications<br />SecondLife 4 years<br />OpenSim for the past 3 years<br />FreeSwitch for the past 2 year<br />Intelligence Training <br />Using AI for training<br />1st winner at the FVWC 2011 for AI Concepts<br />
  3. 3. FVWC 2011<br />Theme: Artificial Intelligence <br />Must be an AI related entry<br />Entries must be in a virtual environment<br />Examples may include<br />Adaptive learning systems<br />Intelligent conversational bots<br />Adaptive behavior<br />Objects<br />processes<br />http://fvwc.army.mil/index.php<br />
  4. 4. Intelligence Training<br />Our approach to the contest<br />Apply as many existing AI concepts to a Virtual World<br />Neural Networks<br />Swarm Intelligence<br />Natural Language processing<br />Speech recognition<br />Weak AI<br />Strong AI<br />Expert systems <br />etc<br />
  5. 5. Intelligence Training<br />Our approach to the contest<br />We picked 6 AI Concepts<br />1. Weak AI<br />AIML Artificial Intelligence Mark Language<br />2. Natural Language process<br />Text To Speech<br />3. Statistical Machine Translation<br />Google Translate with German AIM<br />4. Swarm Intelligence<br />Biods flying birds<br />5. Speech recognition<br />c<br />6. Speech Processing<br />Signal process with MATLAB/Octave<br />Neural Networks<br />Fuzzy Logic<br />
  6. 6. Intelligence Training<br />Theme: Intelligence Training<br />HUMINT: Human Intelligence Training<br />OSINT: Open Source Intelligence Training<br />GEOINT: Geospatial Intelligence Training<br />SIGINT: Signal Intelligence Training<br />
  7. 7. Intelligence Training<br />Theme: Mapped INTs to AI<br />Station 1 <br />HUMINT: Intelligent Chat Bots<br />Weak AI with AIML<br />Station 2 <br />HUMINT: Text To Speech Chat Bots<br />TTS using Cepstrum Voices<br />Station 3<br />OSINT: German Text To Speech Chat Bots<br />Google Translate<br />Station 4<br />GEOINT: UAV Swarms<br />Boids (artificial life program)<br />Station 5<br />SIGINT: Speech Recognition<br />CMU Sphinx<br />Station 6<br />SIGINT: Speech Processing<br />Using Matlaband Octave<br />
  8. 8. Station 1: HUMIT Avatar<br />AI: AI Markup Language<br /><ul><li>In-world Intelligent Chat Bots</li></ul>Using AIML<br />OpenMetaverse<br />
  9. 9. Station 2: HUMIT Avatar<br />AI: Text To Speech<br /><ul><li>In-world Intelligent Chat Bots</li></ul>Using AIML<br />FreeSWITCH<br />Cepstral Voice<br />
  10. 10. Station 3: OSINT Avatar<br />AI: Text To Speech<br /><ul><li>In-world Intelligent German Chat Bots</li></ul>Using German AIML<br />FreeSWITCH<br />Cepstral German Voice<br />Google Translate<br />
  11. 11. Station 4: GEOSINT Objects<br />AI: Boids (artificial life Program)<br /><ul><li>In-world UAV Swarms</li></li></ul><li>Station 5: SIGNT Avatar<br />AI: Speech Recognition<br /><ul><li>In-world order a pizza</li></ul>CMU Sphinux<br />FreeSWITCH<br />
  12. 12. Station 6: SIGINT Workstation<br />AI: AI MATLAB Toolkit<br /><ul><li>In-world Speech Processing</li></ul>Using MATLAB<br />FreeSWITCH<br />
  13. 13. What’s Next<br />External Interfaces<br /><ul><li>Xbox Kinect</li></li></ul><li>What’s Next<br />External Interfaces<br /><ul><li>Emotiv</li>

×