Cns 17

3,634 views

Published on

0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,634
On SlideShare
0
From Embeds
0
Number of Embeds
35
Actions
Shares
0
Downloads
187
Comments
0
Likes
5
Embeds 0
No embeds

No notes for slide

Cns 17

  1. 1. <ul><li>This great Greek philosopher was the preeminent biologist of his day and he opined that the heart was the seat of the intellect. </li></ul><ul><li>Who was he? </li></ul><ul><li>Was he right? </li></ul>
  2. 2. Aristotle was WRONG (about this at least) <ul><li>We now attribute intellect ( as well a host of other functions) to the brain. </li></ul><ul><ul><li>That grayish lump resting w/i the bony cranium </li></ul></ul><ul><ul><ul><ul><li>NAME THE 8 BONES OF THE CRANIUM! </li></ul></ul></ul></ul><ul><ul><li>Weighs about 1600g in ♂ and about 1400g in ♀ </li></ul></ul><ul><ul><li>Has about 10 12 neurons, each of which may receive as many as 200,000 synapses – talk about integration! </li></ul></ul><ul><ul><li>Although these numbers connote a high level of complexity, the CNS is actually quite orderly. </li></ul></ul>
  3. 3. Gray and White Matter <ul><li>Microscopically, the CNS contains 2 neural elements: </li></ul><ul><ul><li>Neuron cell bodies (clusters are known as nuclei) </li></ul></ul><ul><ul><li>Nerve fibers (axons) in bundles called tracts. </li></ul></ul><ul><li>Viewed macroscopically, CNS tissues can be distinguished by color: </li></ul><ul><ul><li>Gray matter consists of somata, dendrites, and unmyelinated axons. </li></ul></ul><ul><ul><li>White matter consists primarily of myelinated axons. </li></ul></ul>
  4. 4. Brain Regions <ul><li>Cerebrum </li></ul><ul><li>Diencephalon </li></ul><ul><li>Brainstem </li></ul><ul><li>Cerebellum </li></ul>Cerebellum
  5. 5. Cerebrum <ul><li>The largest, most conspicuous portion of the brain. </li></ul><ul><li>2 hemispheres connected by the corpus callosum. </li></ul><ul><li>Has an outer cortex of gray matter surrounding an interior that is mostly white matter, except for a few small portions. </li></ul><ul><li>The surface is marked by ridges called gyri separated by grooves called sulci. </li></ul>
  6. 6. <ul><li>Deeper grooves called fissures separate large regions of the brain. </li></ul><ul><ul><li>The median longitudinal fissure separates the cerebral hemispheres. </li></ul></ul><ul><ul><li>The transverse fissure separates the cerebral hemispheres from the cerebellum below. </li></ul></ul><ul><li>Deep sulci divide each hemisphere into 5 lobes: </li></ul><ul><ul><li>Frontal, Parietal, Temporal, Occipital, and Insula </li></ul></ul>
  7. 7. Lobes of the Cerebrum <ul><li>The central sulcus separates the frontal lobe from the parietal lobe. </li></ul><ul><ul><li>Bordering the central sulcus are 2 important gyri, the precentral gyrus and the postcentral gyrus. </li></ul></ul><ul><li>The occipital lobe is separated from the parietal lobe by the parieto-occipital sulcus. </li></ul><ul><li>The lateral sulcus outlines the temporal lobe. </li></ul><ul><ul><li>The insula is buried deep within the lateral sulcus. </li></ul></ul>
  8. 8. Where’s the insula? What’s this called? What’s the name of this region
  9. 9. Cerebrum <ul><li>Each cerebral hemisphere is divided into 3 regions: </li></ul><ul><ul><li>Superficial cortex of gray matter </li></ul></ul><ul><ul><li>Internal white matter </li></ul></ul><ul><ul><li>The basal nuclei – islands of gray matter found deep within the white matter </li></ul></ul>
  10. 10. Cerebral Cortex <ul><li>Allows for sensation, voluntary movement, self-awareness, communication, recognition, and more. </li></ul><ul><li>Gray matter! </li></ul><ul><li>40% of brain mass, but only 2-3 mm thick. </li></ul><ul><li>Each cerebral hemisphere is concerned with the sensory and motor functions of the opposite side (a.k.a. contralateral side) of the body. </li></ul>
  11. 11. 6-Layered cortex Layer I (Molecular) Layer II (External Granular) Layer III (External Pyramidal)—cortico-cortical fibers Layer IV (Internal Granular)—thalamocortical fibers (VPL, VPM, LGN) Layer V (Internal Pyramidal)—CS, CB, & corticostriatal fibers (Betz giant pyramidal cells) Layer VI (Multiform)—corticothalamic projection & association fibers AFFERENT (Layer IV is big in Brodmann Area 3,1,2) EFFERENT (Layer V is big in Brodmann Area 4)
  12. 13. Frontal Lobe <ul><li>The frontal lobe is the area of the brain responsible for higher cognitive functions. </li></ul><ul><li>These include: </li></ul><ul><li>Problem solving </li></ul><ul><li>Spontaneity </li></ul><ul><li>Memory </li></ul><ul><li>Language </li></ul><ul><li>Motivation </li></ul><ul><li>Judgment </li></ul><ul><li>Impulse control </li></ul><ul><li>Social and sexual behavior. </li></ul>
  13. 14. Temporal Lobe The temporal lobe plays a role in emotions, and is also responsible for smelling, tasting, perception, memory, understanding music, aggressiveness, and sexual behavior. The temporal lobe also contains the language area of the brain.
  14. 15. Parietal Lobe The parietal lobe plays a role in our sensations of touch, smell, and taste. It also processes sensory and spatial awareness, and is a key component in eye-hand co-ordination and arm movement. The parietal lobe also contains a specialized area called Wernicke’s area that is responsible for matching written words with the sound of spoken speech .
  15. 16. Occipital Lobe The occipital lobe is at the rear of the brain and controls vision and recognition.
  16. 17. Limbic Lobe The limbic lobe is located deep in the brain, and makes up the limbic system .
  17. 18. Injury Mechanisms <ul><li>The brain is a complex and delicate organ, and one that is vulnerable to injury from a variety of different traumas. These include: </li></ul><ul><li>Frontal Lobe Injury </li></ul><ul><li>Occipital Lobe Injury </li></ul><ul><li>Temporal Lobe Injury </li></ul><ul><li>Parietal lobe injury </li></ul>
  18. 19. Frontal Lobe Injury Click image to play or pause video The frontal lobe of the brain can be injured from direct impact on the front of the head. Impairment of recent memory, inattentiveness, inability to concentrate, behavior disorders, difficulty in learning new information. Lack of inhibition (inappropriate social and/or sexual behavior). Emotional lability. &quot;Flat&quot; affect. Contralateral plegia, paresis. Expressive/motor aphasia.
  19. 20. Occipital Lobe Injury Click image to play or pause video Occipital lobe injuries occur from blows to the back of the head. Primary Visual Cortex: loss of vision opposite field. Visual Association Cortex: loss of ability to recognize object seen in opposite field of vision, &quot;flash of light&quot;, &quot;stars&quot;. 
  20. 21. Temporal Lobe Injury Click image to play or pause video Hearing deficits. Agitation, irritability, childish behavior. Receptive/ sensory aphasia. Kluver-Bucy syndrome
  21. 22. Parietal lobe injury <ul><li>Inability to discriminate between sensory stimuli. </li></ul><ul><li>Inability to locate and recognize parts of the body (Neglect). </li></ul><ul><li>Severe Injury: Inability to recognize self. </li></ul><ul><li>Disorientation of environment space. </li></ul><ul><li>Inability to write . </li></ul>
  22. 23. Cerebral Cortex <ul><li>3 types of functional areas: </li></ul><ul><ul><li>Motor  Control voluntary motor functions </li></ul></ul><ul><ul><li>Sensory  Allow for conscious recognition of stimuli </li></ul></ul><ul><ul><li>Association  Integration </li></ul></ul>
  23. 24. BRODMANN’S AREAS 8 6 4 3,1,2 17 18 19 39 40 41,42 45,44 22 9 10 11 12 34 28 5,7
  24. 25. BRODMANN’S AREAS 8 6 4 3,1,2 17 18 19 39 40 41,42 45,44 22 9 10 11 12 34 28 5,7 8 = Frontal Eye Field 6 = Premotor ctx 5,7 = somesthetic association (apraxia, dom. side) 4 = Primary motor ctx 3,1,2 = Primary somatosensory ctx 41,42 = Primary auditory ctx (Transverse gyrus of Heschl) 45,44 = Broca’s speech area 22 = Wernicke’s speech area (arcuate fasciculus connect to Broca’s ) 40 = Supramarginal gyrus (Rt/Lt confusion, dyscalculia, understanding speech) 39 = Angular gyrus (dyslexia & dysgraphia)
  25. 26. BRODMANN’S AREAS 8 6 4 3,1,2 17 18 19 39 40 41,42 45,44 22 9 10 11 12 34 28 39, 40 = Inf parietal lobe (Gerstmann’s syndrome) on dominant side a) Rt/Lt confusion b) dyscalculia c) finger agnosia d) dyslexia & dysgraphia e) lower quadrantanopia (visual radiations to cuneus) Parietal lobe, non-dominant hemisphere (Sup or Inf parietal lobes) a) contralateral sensory neglect & astereognosis b) construction apraxia c) lower quadrantanopia (visual radiations to cuneus) 9,10,11,12 = Prefrontal ctx Post part of orbital gyrus = smell Uncus = serves as part of primary olfactory ctx (medial temporal lobe) 34 = Primary olfactory ctx (medial temporal lobe—seizures can have smell aura) 5,7
  26. 27. Cortical Motor Areas <ul><li>Primary Motor Cortex </li></ul><ul><li>Premotor Cortex </li></ul><ul><li>Broca’s Area </li></ul><ul><li>Frontal Eye Field </li></ul>
  27. 28. Primary motor cortex Broca’s Area Premotor cortex Frontal Eye Field
  28. 29. Primary (Somatic) Motor Cortex <ul><li>Located in the precentral gyrus of each cerebral hemisphere. </li></ul><ul><li>Contains large neurons (pyramidal cells) which project to SC neurons which eventually synapse on skeletal muscles </li></ul><ul><ul><li>Allowing for voluntary motor control. </li></ul></ul><ul><ul><li>These pathways are known as the corticospinal tracts or pyramidal tracts. </li></ul></ul>
  29. 30. Premotor Cortex <ul><li>Located just anterior to the primary motor cortex. </li></ul><ul><li>Involved in learned or patterned skills. </li></ul><ul><li>Involved in planning movements. </li></ul>
  30. 31. Broca’s Area <ul><li>Typically found in only one hemisphere (often the left), anterior to the inferior portion of the premotor cortex. </li></ul><ul><li>Directs muscles of tongue, lips, and throat that are used in speech production. </li></ul><ul><li>Involved in planning speech production and possibly planning other activities. </li></ul>
  31. 32. Frontal Eye Field <ul><li>Controls voluntary eye movements. </li></ul><ul><li>Found in and anterior to the premotor cortex, superior to Broca’s area. </li></ul>
  32. 33. Sensory Areas <ul><li>Found in the parietal, occipital, and temporal lobes . </li></ul><ul><ul><li>Primary somatosensory cortex </li></ul></ul><ul><ul><li>Somatosensory association cortex </li></ul></ul><ul><ul><li>Visual areas </li></ul></ul><ul><ul><li>Auditory areas </li></ul></ul><ul><ul><li>Olfactory cortex </li></ul></ul><ul><ul><li>Gustatory cortex </li></ul></ul><ul><ul><li>Vestibular cortex </li></ul></ul>
  33. 35. Primary Somatosensory Cortex <ul><li>Found in the postcentral gyrus. </li></ul><ul><li>Neurons in this cortical area receive info from sensory neurons in the skin and from proprioceptors which monitor joint position. </li></ul><ul><li>Contralateral input. </li></ul>
  34. 37. Somatosensory Association Cortex <ul><li>Found posterior to the primary somatosensory cortex and is neurally tied to it. </li></ul><ul><li>Synthesizes multiple sensory inputs to create a complete comprehension of the object being felt. </li></ul>
  35. 38. Primary Visual Cortex <ul><li>Found in the posterior and medial occipital lobe. </li></ul><ul><li>Largest of the sensory cortices. </li></ul><ul><li>Contralateral input. </li></ul>
  36. 39. Visual Association Area <ul><li>Surrounds the primary visual cortex. </li></ul><ul><li>Basically vision is the sensation of bars of light on our retinal cells. The primary visual cortex tells which cells are being stimulated and how. </li></ul>
  37. 40. Auditory Cortex <ul><li>Found in the superior margin of the temporal lobe, next to the lateral sulcus. </li></ul><ul><li>Sound waves excite cochlear receptors in the inner ear which send info to the auditory cortex. </li></ul><ul><li>There is also an auditory association area which lets us interpret and remember sounds. </li></ul>
  38. 41. Olfactory Cortex <ul><li>Found in the frontal lobe just above the orbits. </li></ul><ul><li>Receptors in the olfactory epithelium extend through the cribriform plate and are excited by the binding of oderants. They then send their info to the olfactory cortex. </li></ul><ul><li>Very much involved in memory and emotion. </li></ul>
  39. 43. Gustatory and Vestibular Cortices <ul><li>Gustatory cortex is involved in taste and is in the parietal lobe just deep to the temporal lobe. </li></ul><ul><li>Vestibular cortex is involved in balance and equilibrium and is in the posterior insula </li></ul>
  40. 45. Association Areas <ul><li>Allows for analysis of sensory input. </li></ul><ul><li>Prefrontal cortex </li></ul><ul><li>Language areas </li></ul><ul><li>General interpretation area </li></ul><ul><li>Visceral association area </li></ul>
  41. 46. Language Areas <ul><li>Large area for language understanding and production surrounding the lateral sulcus in the left (language-dominant) hemisphere </li></ul><ul><li>Includes: </li></ul><ul><ul><li>Wernicke’s area  understanding oral/written words </li></ul></ul><ul><ul><li>Broca’s area  speech production </li></ul></ul><ul><ul><li>Lateral prefrontal cortex  language comprehension and complex word analysis </li></ul></ul><ul><ul><li>Lateral and ventral temporal cortex  integrates visual and auditory stimulate </li></ul></ul>
  42. 47. General and Visceral Association Areas <ul><li>General area integrates multiple stimuli into a single cogent “understanding of the situation.” </li></ul><ul><ul><li>Found on only one hemisphere – typically left. </li></ul></ul><ul><ul><li>Contained by 3 lobes: temporal, occipital, and parietal. </li></ul></ul><ul><li>Visceral association area is involved in perception of visceral sensations (such as disgust). </li></ul><ul><ul><li>Located in insular cortex </li></ul></ul>
  43. 48. Lateralization <ul><li>The fact that certain activities are the almost exclusive domain of one of the 2 hemispheres. </li></ul><ul><li>In most people, the left hemisphere has a more control over language, math, and logic. </li></ul><ul><li>While the right hemisphere is geared towards musical, artistic and other creative endeavors. </li></ul><ul><li>Most individuals with left cerebral dominance are right-handed. </li></ul>
  44. 50. Cerebral White Matter <ul><li>3 types of fibers: </li></ul><ul><ul><li>Commissural – connect corresponding areas of the 2 hemispheres. Largest is the corpus callosum. </li></ul></ul><ul><ul><li>Association fibers – connect different parts of the same hemisphere </li></ul></ul><ul><ul><li>Projection fibers – fibers entering and leaving the cerebral hemispheres from/to lower structures </li></ul></ul>
  45. 51. Prefrontal Cortex <ul><li>Anterior frontal lobes </li></ul><ul><li>Involved in analysis, </li></ul><ul><li>cognition, thinking, personality, conscience, & much more. </li></ul><ul><li>Look at its evolution </li></ul><ul><li>Areas: 9-12, 13, </li></ul><ul><li>44-47 and 24. </li></ul>
  46. 52. Connections- Afferent
  47. 54. Functions <ul><li>Control of ANS </li></ul><ul><li>Control of higher intellectual activities </li></ul><ul><li>Control of personality </li></ul><ul><li>Control of emotional affects </li></ul><ul><li>Control of behavior and social consciousness </li></ul><ul><li>Responsible for the resting EEG </li></ul>
  48. 55. Prefrontal leucotomy in Man <ul><li>Flight of ideas </li></ul><ul><li>Euphoria </li></ul><ul><li>Impairment of memory </li></ul><ul><li>Attention and concentration power is lost </li></ul><ul><li>Lack of intellectual activity </li></ul><ul><li>Emotional instability </li></ul>

×