Successfully reported this slideshow.
Sensing
Presence
(PreSense)
Ontology
–
        
User
Modelling
in
the
Seman3c
Sensor
Web
                       A.E.
Cano,...
Outline
   •    Introduc3on/Mo3va3on
   •    Related
Work
   •    Sensors
&
User
Context
   •    Aims
&
Challenges
       ...
Introduc3on/Mo3va3on
–

             Mobiles,
Sensors
&
Smart
Environments
PreSense:
User
Modelling
in
the
Seman3c
Sensor
...
Outline
   •  Introduc3on/Mo3va3on
   •  Related
Work
   •  Sensors
&
User
Context
   •  Aims
&
Challenges
         –  Sce...
Introduc3on/Mo3va3on
   •  the
need
to
iden3fy:
         –  users’
aVached
sensors

         –  the
observa3ons
of
these
s...
Outline
   •  Introduc3on/Mo3va3on
   •  Related
Work
   •  Sensors
&
User
Context
   •  Aims
&
Challenges
         –  Sce...
Sensors
&
User
Context
    Static/Stable Features                                                             Work place  ...
Sensors
&
User
Context
    Static/Stable Features                             Name   Work place   Highly changing Features...
Outline
   •    Introduc3on/Mo3va3on
   •    Related
Work
   •    Sensors
&
User
Context
   •    Aims
&
Challenges
       ...
Aims
&
Challenges
 •  current
user
modelling
methods
       –  depict
the
digital
iden3ty
of
a
given
person
       –  cons...
Outline
   •    Introduc3on/Mo3va3on
   •    Related
Work
   •    Sensors
&
User
Context
   •    Aims
&
Challenges
       ...
Scenario
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

Scenario
–
Challenges
Portrayed
   •  access
to
networks
         –  WAN/LAN
         –  bluetooth,
other
local
wireless
n...
Outline
   •    Introduc3on/Mo3va3on
   •    Related
Work
   •    Sensors
&
User
Context
   •    Aims
&
Challenges
       ...
PreSense
Ontology
‐
Requirements
   •    Iden3fica3on
and
Addressability
   •    Sensor
Ownership
and
Provenance
   •    As...
Outline
   •    Introduc3on/Mo3va3on
   •    Related
Work
   •    Sensors
&
User
Context
   •    Aims
&
Challenges
       ...
Imported
Ontologies

   •  Seman3c
Sensor
Network
Incubator
Group
(SSN‐XG)
         –  to
model
sensors
   •  FOAF
       ...
PreSense
Core
Concepts
–
                                         
                                             Entity    ...
PreSense
Core
Concepts
–
                                         
                                             Sensor    ...
PreSense
Core
Concepts
–
                                         
                           PhysicalPresence            ...
PreSense
Core
Concepts
–
                                         
                               OnlinePresence          ...
PreSense
Core
Concepts
–
                                         
         FeaturePropertyAssociation                    ...
PreSense
Ontology
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web
 Complete ontology available at: http://purl.org/net/...
PreSense
Ontology
     Match
of
core
PreSense
ontology
components
to
requirements
PreSense:
User
Modelling
in
the
Seman3c
...
Outline
   •    Introduc3on/Mo3va3on
   •    Related
Work
   •    Sensors
&
User
Context
   •    Aims
&
Challenges
       ...
Scenario
Reminder
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

PreSense
Ontology
‐
Modules
   •  modelling
aspects
of
the
user’s
physical
proper3es
using
      PreSense
         –  e.g....
PreSense
Ontology
‐
Modules
                    @prefix ps: <http://purl.org/net/preSense/ns#> .                     @pref...
PreSense
Ontology
‐
Modules
                    @prefix ps: <http://purl.org/net/preSense/ns#> .                     @pref...
PreSense
Ontology
‐
Modules
                    @prefix ps: <http://purl.org/net/preSense/ns#> .                     @pref...
PreSense
Ontology
‐
Modules
   •  Modeling
aspects
of
the
user’s
online
(virtual)
presence
using
      PreSense
         –...
PreSense
Ontology
‐
Modules
 <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; ps:hasSensor <http://my.identity.org...
PreSense
Ontology
‐
Modules
 <http://my.identity.org/Bob/sensors/stSen1/> a ssn:Sensor;  <http://my.identity.org/Bob> a ps...
Outline
   •    Introduc3on/Mo3va3on
   •    Related
Work
   •    Sensors
&
User
Context
   •    Aims
&
Challenges
       ...
Conclusions
    The
PreSense
Ontology,
compared
to
exis3ng,
standard
models
–
                       fulfilment
of
requirem...
Next
Steps                                                 
   •  further
development
of
PreSense
modules

         –  to
...
Find
this
online
at...
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

Upcoming SlideShare
Loading in …5
×

Sensing 
Presence
(PreSense)
Ontology
–
 
User 
Modelling
 in 
the 
Semantic 
Sensor 
Web


1,768 views

Published on

Sensor Networks meets Social Web

Published in: Technology, Education
  • Be the first to comment

Sensing 
Presence
(PreSense)
Ontology
–
 
User 
Modelling
 in 
the 
Semantic 
Sensor 
Web


  1. 1. Sensing
Presence
(PreSense)
Ontology
–
 
User
Modelling
in
the
Seman3c
Sensor
Web
 A.E.
Cano,
A.‐S.
Dadzie,
V.S.
Uren,
F.
Ciravegna
 The
Oak
Group,

 Department
of
Computer
Science,

 The
University
of
Sheffield
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  2. 2. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  3. 3. Introduc3on/Mo3va3on
–

 Mobiles,
Sensors
&
Smart
Environments
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  4. 4. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  5. 5. Introduc3on/Mo3va3on
 •  the
need
to
iden3fy:
 –  users’
aVached
sensors

 –  the
observa3ons
of
these
sensors
as
physical
and
online
resources
 •  
address
the
data
streams
generated
as
users’
feature
proper3es
 •  exis3ng
ontologies
address
some
of
the
requirements
to
handle
 this:
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  6. 6. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  7. 7. Sensors
&
User
Context
 Static/Stable Features Work place NamePreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  8. 8. Sensors
&
User
Context
 Static/Stable Features Name Work place Highly changing Features Position InterestsPreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  9. 9. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  10. 10. Aims
&
Challenges
 •  current
user
modelling
methods
 –  depict
the
digital
iden3ty
of
a
given
person
 –  consider
sensor
informa3on
distributed
across
physical
and
online

worlds
 •  explore
new
techniques
for
combining:
 –  sta3c/stable
features
 –  dynamic
or
highly
changing
features
 •  explore
different
perspec3ves
in
which
the
aVachment
of
sensor
 data
feeds
into
user
models

 –  capture
interac3on
with
smart
objects
and
environments
 –  make
use
of
surrounding,
real‐3me
context
 –  by
aVaching
sensor
data
streams
(physical
and
virtual)
to
user
profiles
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  11. 11. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  12. 12. Scenario
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  13. 13. Scenario
–
Challenges
Portrayed
 •  access
to
networks
 –  WAN/LAN
 –  bluetooth,
other
local
wireless
networks
 •  currency
and
validity
of
informa3on

 •  physical
presence
data
vs
online
presence
data
 •  verifica3on
of
iden3ty
 –  associa3on
of
sensor
data
with
en33es/individuals
 –  trust,
privacy
–
what
informa3on
should
be
shared,
and
with
 whom
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  14. 14. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  15. 15. PreSense
Ontology
‐
Requirements
 •  Iden3fica3on
and
Addressability
 •  Sensor
Ownership
and
Provenance
 •  Associa3on
of
Sensor
Data
and
Profile
Informa3on
 •  Privacy
in
Data
Streams
 •  Sensor
Data
Expira3on
 •  Interac3on
with
Smart
En33es
 •  Integrate
Physical
and
Virtual
Presence
S3muli
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  16. 16. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  17. 17. Imported
Ontologies

 •  Seman3c
Sensor
Network
Incubator
Group
(SSN‐XG)
 –  to
model
sensors
 •  FOAF
 –  to
model
en33es,
e.g.,
Person •  Provenance
Vocabulary
(PRV)
 –  provenance‐related
metadata
for
sensors
and
their
owners
 •  Web
of
Trust
(WOT)
 –  to
verify
ownership
of
a
sensor
 •  Online
Presence
Ontology
(OPO)
 –  users
online
presence
proper3es
 •  Dolce
Ultralight
Ontology
(DUL)
 •  to
model
selected
proper3es
of
an
en3ty,
e.g.,
context
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  18. 18. PreSense
Core
Concepts
–
 
 Entity •  func3ons
 –  describe
iden33es
of
Persons
and
other
en33es
to
whom
sensor
data
is
aVached
 –  prevent
falsifica3on
of
provenance
(through
wot:User)
 •  aVaches
sensors
to
En33es
using
ps:hasSensor property
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  19. 19. PreSense
Core
Concepts
–
 
 Sensor •  a
physical
object
that
detects,
observes
and
measures
a
 s3mulus
 –  ps:attachedTo
property
used
to
indicate
Entity
to
which
a
Sensor
 is
aVached
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  20. 20. PreSense
Core
Concepts
–
 
 PhysicalPresence •  aggrega3on
of
physical
proper3es
 •  derived
by
sensors
observing
physical
s3muli
exhibited
by
an
 Entity,
e.g.,
physical
loca3on,
blood
glucose
levelsPreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  21. 21. PreSense
Core
Concepts
–
 
 OnlinePresence •  abstrac3on
of
the
aggrega3on
of
online
proper3es
exhibited
by
an
 Entity,
 –  e.g.,
detec3on
of
change
of
status
on
a
social
network
site
 •  derived
by
virtual
sensors
observing
s3muli

PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  22. 22. PreSense
Core
Concepts
–
 
 FeaturePropertyAssociation •  bridge
between
a
sensors
observed
s3mulus
and
the
feature
 that
this
s3mulus
characterises
in
a
user,
e.g.,

 –  a
sensor
observes
changes
in
Bob’s
BloodGlucose
levels
‐
the
 feature
of
interest
 –  this
associa3on
enables
Alice
to
monitor
Bob’s
sugar
levels
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  23. 23. PreSense
Ontology
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web
 Complete ontology available at: http://purl.org/net/preSense/ns
  24. 24. PreSense
Ontology
 Match
of
core
PreSense
ontology
components
to
requirements
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  25. 25. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  26. 26. Scenario
Reminder
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  27. 27. PreSense
Ontology
‐
Modules
 •  modelling
aspects
of
the
user’s
physical
proper3es
using
 PreSense
 –  e.g.,
monitoring
Bob’s
glucose
levels
 –  handles
features
related
to
Location
and
PhysiologicalStatePreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  28. 28. PreSense
Ontology
‐
Modules
 @prefix ps: <http://purl.org/net/preSense/ns#> . @prefix physioState: <http://purl.org/net/preSense/physioState/ns#> . @prefix prvTypes: <http://purl.org/net/provenance/types#> . @prefix prv: <http://purl.org/net/provenance/ns> . @prefix ps: <http://purl.org/net/preSense/ns#> . @prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; @prefix physioState: <http://purl.org/net/ ps:hasSensor <http://my.identity.org/Bob/sensors/glSen1/>. ps:declaresPresence _:p1. preSensephysioState/ns#> . _:p1 a ps:Presence; @prefix prvTypes: <http://purl.org/net/provenance/types#> . ps:hasPresenceComponent _:phyPr. @prefix prv: <http://purl.org/net/provenance/ns> . _:phyPr a ps:PhysicalPresence; @prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . ps:hasPresenceProperty _:prop1. _:prop1 a physioState:GlucoseLevel; ps:hasPresenceProperty _:glucoseLevel. <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; ps:isPropertyOf _:bloodGlucose . ps:hasSensor <http://my.identity.org/Bob/sensors/glSen1/>. <http://my.identity.org/Bob/sensors/glSen1/> ps:declaresPresence _:p1. a ssn:Sensor, prv:Actor, prvTypes:Sensor; prv:operatedBy <http://my.identity.org/Bob> . _ prv:observedBy <http://my.identity.org/Bob/sos/observations/glSen1/>. <http://my.identity.org/Bob/sos/observations/glSen1/> a ssn:Observation; ssn:observedProperty _:glucoseLevel. _:glucoseLevel a ssn:Property, ps:PresenceProperty; ssn:isPropertyOf _:bloodGlucose. _:bloodGlucose a ps:FeaturePropertyAssociation;PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  29. 29. PreSense
Ontology
‐
Modules
 @prefix ps: <http://purl.org/net/preSense/ns#> . @prefix physioState: <http://purl.org/net/preSense/physioState/ns#> . @prefix prvTypes: <http://purl.org/net/provenance/types#> . @prefix prv: <http://purl.org/net/provenance/ns> . @prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; ps:hasSensor <http://my.identity.org/Bob/sensors/glSen1/>. ps:declaresPresence _:p1. _:p1 a ps:Presence; _:p1 a ps:Presence; ps:hasPresenceComponent _:phyPr. ps:hasPresenceComponent _:phyPr. _:phyPr a ps:PhysicalPresence; _:phyPr a ps:PhysicalPresence; ps:hasPresenceProperty _:prop1. ps:hasPresenceProperty _:prop1. _:prop1 a physioState:GlucoseLevel; ps:hasPresenceProperty _:glucoseLevel. _:bloodGlucose . _:prop1 a physioState:GlucoseLevel; <http://my.identity.org/Bob/sensors/glSen1/> ps:hasPresenceProperty _:glucoseLevel. a ssn:Sensor, prv:Actor, prvTypes:Sensor; prv:operatedBy <http://my.identity.org/Bob> . ps:isPropertyOf _:bloodGlucose . prv:observedBy <http://my.identity.org/Bob/sos/observations/glSen1/>. <http://my.identity.org/Bob/sos/observations/glSen1/> a ssn:Observation; ssn:observedProperty _:glucoseLevel. _:glucoseLevel a ssn:Property, ps:PresenceProperty; ssn:isPropertyOf _:bloodGlucose. _:bloodGlucose a ps:FeaturePropertyAssociation;PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  30. 30. PreSense
Ontology
‐
Modules
 @prefix ps: <http://purl.org/net/preSense/ns#> . @prefix physioState: <http://purl.org/net/preSense/physioState/ns#> . @prefix prvTypes: <http://purl.org/net/provenance/types#> . @prefix prv: <http://purl.org/net/provenance/ns> . @prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> . <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; <http://my.identity.org/Bob/sensors/glSen1/> ps:hasSensor <http://my.identity.org/Bob/sensors/glSen1/>. ps:declaresPresence _:p1. a ssn:Sensor, prv:Actor, prvTypes:Sensor; _:p1 a ps:Presence; prv:operatedBy <http://my.identity.org/Bob> . ps:hasPresenceComponent _:phyPr. prv:observedBy <http://my.identity.org/Bob/sos/ _:phyPr a ps:PhysicalPresence; observations/glSen1/>. ps:hasPresenceProperty _:prop1. <http://my.identity.org/Bob/sos/observations/glSen1/> _:prop1 a physioState:GlucoseLevel; ps:hasPresenceProperty _:glucoseLevel. a ssn:Observation; ps:isPropertyOf _:bloodGlucose . ssn:observedProperty _:glucoseLevel. <http://my.identity.org/Bob/sensors/glSen1/> _:glucoseLevelprv:Actor, prvTypes:Sensor; . ps:PresenceProperty; a ssn:Sensor, a ssn:Property, prv:operatedBy <http://my.identity.org/Bob> ssn:isPropertyOf _:bloodGlucose. a ssn:Observation; prv:observedBy <http://my.identity.org/Bob/sos/observations/glSen1/>. <http://my.identity.org/Bob/sos/observations/glSen1/> _:bloodGlucose a ps:FeaturePropertyAssociation; ssn:observedProperty _:glucoseLevel. _:glucoseLevel a ssn:Property, ps:PresenceProperty; ssn:isPropertyOf _:bloodGlucose. _:bloodGlucose a ps:FeaturePropertyAssociation;PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  31. 31. PreSense
Ontology
‐
Modules
 •  Modeling
aspects
of
the
user’s
online
(virtual)
presence
using
 PreSense
 –  e.g.,
monitoring
Bob’s
tweet
stream
 –  handles
features
related
to
OnlineStatusStreamPreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  32. 32. PreSense
Ontology
‐
Modules
 <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; ps:hasSensor <http://my.identity.org/Bob/sensors/stSen1/>. <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; ps:hasSensor <http://my.identity.org/Bob/ sensors/stSen1/>. ps:declaresPresence _:p1. ps:declaresPresence _:p1. _:p1a a ps:Presence; _:p1 ps:Presence; ps:hasPresenceComponent _:onlPr. ps:hasPresenceComponent _:onlPr. _:onlPr a ps:OnlinePresence; _:onlPr a ps:OnlinePresence; ps:hasPresenceProperty _:prop2. ps:hasPresenceProperty _:prop2. _:prop2 a ps:OnlineStatusStream; ps:hasPresenceProperty :personalStatusStream. ps:isPropertyOf :twitterStatusStream . _:prop2 a ps:OnlineStatusStream; ps:hasPresenceProperty :personalStatusStream. <http://my.identity.org/Bob/ /stSen1/> a ssn:Sensor, prv:Actor, prvTypes:Sensor; ps:isPropertyOf :twitterStatusStream <http://my.identity.org/Bob/sos/ prv:operatedBy <http://my.identity.org/Bob> . prv:observedBy . observations/stSen1/>.<http://my.identity.org/Bob/sos/observations/stSen1/> a ssn:Observation; ssn:observedProperty :personalStatusStream .:personalStatusStreama ssn:Property, ps:PresenceProperty; ssn:isPropertyOf :twitterStatusStream.:twitterStatusStreama ps:FeaturePropertyAssociationPreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  33. 33. PreSense
Ontology
‐
Modules
 <http://my.identity.org/Bob/sensors/stSen1/> a ssn:Sensor; <http://my.identity.org/Bob> a ps:Entity, a foaf:Person; ps:hasSensor <http://my.identity.org/Bob/ prv:operatedBy <http://my.identity.org/Bob> . sensors/stSen1/>. prv:observedBy <http://my.identity.org/Bob/sos/observations/ ps:declaresPresence _:p1. stSen1/>. _:p1 a ps:Presence; <http://my.identity.org/Bob/sos/observations/stSen1/> a ps:hasPresenceComponent _:onlPr. ssn:Observation; ssn:observedProperty _:personalStatusStream. _:onlPr a ps:OnlinePresence; ps:hasPresenceProperty _:prop2. _:personalStatusStream a ssn:Property, ps:PresenceProperty; ssn:isPropertyOf _:twitterStatusStream. _:prop2 a ps:OnlineStatusStream; ps:hasPresenceProperty :personalStatusStream. _:twitterStatusStream a ps:FeaturePropertyAssociation ps:isPropertyOf :twitterStatusStream . <http://my.identity.org/Bob/ /stSen1/> a ssn:Sensor, prv:Actor, prvTypes:Sensor; prv:operatedBy <http://my.identity.org/Bob> . prv:observedBy <http://my.identity.org/Bob/sos/ observations/stSen1/>.<http://my.identity.org/Bob/sos/observations/stSen1/> a ssn:Observation; ssn:observedProperty :personalStatusStream .:personalStatusStreama ssn:Property, ps:PresenceProperty; ssn:isPropertyOf :twitterStatusStream.:twitterStatusStreama ps:FeaturePropertyAssociationPreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  34. 34. Outline
 •  Introduc3on/Mo3va3on
 •  Related
Work
 •  Sensors
&
User
Context
 •  Aims
&
Challenges
 –  Scenario
of
Use
 •  PreSense
Ontology
 –  Requirements
 –  Design
 –  Usage
 •  Conclusions
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  35. 35. Conclusions
 The
PreSense
Ontology,
compared
to
exis3ng,
standard
models
–
 fulfilment
of
requirements
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  36. 36. Next
Steps 
 •  further
development
of
PreSense
modules

 –  to
address
interac3on
with
smart
en33es
and
environments,
e.g.,

 •  mapping
user
loca3ons
to
NearByPOIs
and
NearByFriends
 •  tes3ng
applica3on
of
PreSense
in
real
world
scenarios
 –  by
exploring
new
environments
and
ongoing
events
 –  plans
to
evaluate
PreSense
during
Sheffield
2011
Tramlines
Fes3val
 •  link
users’
ps:PhysicalPresence
(via
mobile
GPS)
to
 ps:OnlinePresence
(via
twiVer
and
public
Facebook
feeds)
 •  collect
and
broadcast
informa3on,
e.g.,

 –  par3cipants’
interests
in
music
and
fes3vals
(Events)
 –  preferences
when
exploring
new
loca3ons
(NearByPOIs)
 –  informa3on
on
NearByFriends
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web

  37. 37. Find
this
online
at...
PreSense:
User
Modelling
in
the
Seman3c
Sensor
Web


×