Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Technical Introduction to AriAnA Rescue Robot Team


Published on

This document which is presented by Amir H. Soltanzadeh outlines the technical issues applied in AriAnA rescue robot team.

Published in: Technology, Business
  • Be the first to comment

Technical Introduction to AriAnA Rescue Robot Team

  1. 1. AriAnA Rescue Robot Team<br />Technical Introduction<br />Amir H. SoltanzadehRobotics Lab @ Engineering School<br />IAUCTB<br />
  2. 2. Outlines<br />Introduction to USAR Robotics<br />USAR as a real-world problem<br />RoboCup Rescue Robot League<br />Technical introduction<br />Mechanical overview<br />Hardware architecture<br />Software architecture<br />
  3. 3. USAR Robotics<br />
  4. 4. What is USAR Robotics?<br />Search<br />To look through in a place or in an area carefully in order to find something missing or lost<br />Rescue<br />To free or deliver victim from confinement.<br />USAR: Urban Search And Rescue<br />
  5. 5. What is USAR Robotics?<br />Search<br />To look through in a place or in an area carefully in order to find something missing or lost<br />Rescue<br />To free or deliver victim from confinement.<br />Developing robots to be used in USAR application<br />
  6. 6. Why use robots for USAR?<br />3-D law<br /> Robots can help in Dirty,Dangerous, DullTasks.<br /> They can do what rescuers or rescue dogs can’t!<br />voids smaller than person can enter<br />voids on fire or oxygen depleted<br />Lose ½ cognitive attention with each level of protection<br />Void:1’x2.5’x60’<br />Void on fire<br />
  7. 7. Why use robots for USAR?<br />3-D law<br /> Robots can help in Dirty, Dangerous, DullTasks.<br />The most important person in a rescue attempt is the rescuer!<br />Not enough trained people<br />1 survivor, entombed: 10 rescuers, 4 hours<br />1 survivor, trapped/crushed: 10 rescuers, 10 hours<br />135 rescuers died Mexico City, 65 in confined spaces<br />
  8. 8. Why use robots for USAR?<br />3-D law<br /> Robots can help in Dirty,Dangerous, Dull Tasks.<br /> They save time!<br />Time is very critical<br />Golden 24 hours<br />
  9. 9. Taxonomy of USAR Robots<br />MAV<br />USV<br />Man-packable<br />UAV<br />Man-portable<br />Big-size<br />USAR robots<br />UGV<br />
  10. 10. Brief History of USAR Robotics<br />Oklahoma City bombing (1995)<br /> The Idea of using robots in USAR domain (by R. Murphy andJ. Blitch)<br />Hanshi-Awaji earthquake in Kobe City (1995)<br /> The trigger for theRoboCup Rescueinitiative<br />WTC 9/11 (2001) First practical usage of robots in real USAR application<br />After 2001 rescue robots were applied in several occasions:<br />Boat robots (USV) were used after hurricanes Charley, Dennis, Katrina and Wilma <br />Aerial robots (UAV) were used after earthquake in L’Aquila, Italy<br />0<br />6<br />15<br />
  11. 11. RoboCup Rescue Robot League<br />RoboCup<br />Juniors<br />Seniors<br />Soccer<br />Rescue<br />@Home<br />Soccer<br />Rescue<br />Simulation<br />Simulation<br />Dance<br />Small Size<br />Robot<br />Middle Size<br />Standard Platform<br />Humanoid<br />
  12. 12. RoboCup Rescue Robot League<br />Tasks<br />Finding victims in a simulated destructed building<br />Identifying detected victims (signs of life and identity)<br />Marking victims’ locations on an automatically generated map<br />
  13. 13. RoboCup Rescue Robot League<br />Test Arena<br />Yellow<br />Ramps<br />Autonomous Robots Only<br />Orange<br />Steep Ramp<br />Stairs<br />Red<br />Step-Field<br />Radio Drop-Out<br />Autonomous Mobility<br />
  14. 14. AriAnA Rescue Robot Team<br />
  15. 15. Brief History<br />Start (2005)<br /> • Research phase in Shahed Research Center (2005)<br />Becoming official team of IAUCTB (2006)<br /> • 7th place in final ranking of RoboCup Rescue (2006)<br />Joining with AVA – Malaysia (2008)<br /> • 2nd place in ISME 2008 student projects (2008)<br /> • 7th place in RoboCup Rescue (2009)<br /> • 1st place in Khwarizmi Robotics Competitions (2010)<br />2009<br />2006<br />2007<br />2008<br />2009<br />2010<br />AVA - Malaysia (ISOP Int. Co.)<br />
  16. 16. Mechanical Overview<br />Mobile manipulation in rough terrain:<br />Locomotion<br />Manipulation <br />
  17. 17. Locomotion<br />Mobility as a problem:<br />Rescue robots should be highly mobile.<br />Compromising between Mobility and Complexity of locomotion systems is inevitable.<br />Biomimicry has not yet been a suitable solution due to technical limitations:<br />Nature does not create efficient locomotion systems (living beings must do numerous things).<br />Intelligent control of advanced mobility robots is computationally power hungry. <br />Mobility<br />Complexity<br />Efficiency<br />Various Platforms<br />(for variety of terrains)<br />Complexity<br />as less complicated as possible to fulfill a task<br />
  18. 18. Hybrid Locomotion<br />Our solution:<br />Designing a walking mechanism which is not necessarily inspired from the nature.<br />Legged systems are very hard to control!<br />Decreasing complexity of control system by means of semi-active joint controlling<br />Triangular Tracked Wheel<br />Legged<br />Wheeled<br />Tracked<br />Higher maneuverability<br />on rough terrains<br />Higher traction +<br />Lower ground pressure<br />Higher efficiency<br />while steering<br />
  19. 19. Concept of TTW Mechanism<br />2 DOF:<br />Tracks (velocity & torque controlled)<br />Triangular frames (semi-active joint):<br />Active (position, velocity & torque controlled)<br />Passive<br />
  20. 20. Concept of TTW Mechanism<br />Active joint controlling:<br />Continuous movement:<br /> Tracks traveling -> suitable for flat grounds <br />(This type is also available in passive mode)<br />Discrete movement:<br />Triangular frames rotation -> for rough terrains<br />Combined movement:<br /> Both tracks and triangles -> for ultra-rough terrains<br />
  21. 21. Concept of TTW Mechanism<br />Passive joint controlling: <br />Surface adaptation:<br />Lateral adaptation: Increasing traction without control process<br />Axial adaptation:Passing obstacles without control process<br />Not actually controlled but is monitored!<br />
  22. 22. Manipulator<br />Manipulator:<br />Surveillance<br />Camera <br />Victim detection sensors<br />Manipulation<br />Camera<br />Victim detection sensors<br />Gripper<br />Problems:<br />DOF:<br />Maneuverability<br />Complexity<br />Accuracy<br />Payload<br />End effector’s orientation correction mechanism: <br />Combination of two parallelogram four-bar linkage with flexible links<br />
  23. 23. Hardware Architecture<br />Power Management System<br />Main Board<br />Communication System<br />Motors & Drivers<br />Video System<br />Sensors<br />
  24. 24. Power Management System<br />Web based PMS:<br />Power distribution<br />Monitoring (voltage & current) <br />Web Interfaced<br />Intelligent control<br />Self-health check<br />
  25. 25. Main Board<br />Industry grade Motherboard<br />Small (115 x 165 mm) <br />Powerful<br />Pentium M 1.4 GHz, 2M L2 cache<br />Robust<br />Fanless (-40 to +80 C)<br />Compact Flash compatible<br />PC/104-plus compatible<br /> 0% ~ 90% relative humidity <br />
  26. 26. Communications<br />Internal<br />Wired<br />External <br />Wireless Communication<br />5 GHz IEEE802.11a Access Point / Bridge<br />
  27. 27. Motors & Drivers<br />High efficiency brushless DC motors <br />~ 90% efficient<br />120 – 200W nominal power<br />Highly efficient Gearhead<br />~ 80% efficient<br />Incremental Encoder<br />1500 cpr<br />Driver<br />Torque control<br />Velocity control<br />Position control<br />
  28. 28. Video System<br />Camera<br />Miniature cam (QTY = 3)<br />Zoom cam (QTY = 1)<br />Optical zoom<br />Auto/Manual control<br />Video Server<br />Industry grade VS<br />Higher quality <br />Resolution: 720 x 480<br />Frame rate: up to 30 fps<br />Robustness<br />3g shock & 1g vibration<br />
  29. 29. Sensors<br />Navigation<br />Dead reckoning<br />Odometry<br />IMU <br />Range sensors<br />Scanning Laser Range Finder<br />Vision <br />Monocular<br />Stereo<br />Proximity sensors<br />Ultrasonic<br />GPS (Outdoor only)<br />
  30. 30. Sensors<br />Victim identification <br />Temperature<br />Thermal imaging camera<br />Temperature scanner <br />Vision <br />Monocular<br />Breathing<br />CO2 sensor<br />
  31. 31. Software Architecture<br />Robotic Server<br />HRI<br />SLAM<br />
  32. 32. Robotic Server<br />Player (started in 2000)<br />A universal driver for robotics<br />Stage<br />2D multi-robot simulator<br />Gazebo (started in 2003)<br />High-fidelity 3D multi-robot simulator<br />
  33. 33. Player / Stage / Gazebo<br />Gazebo (3D simulation)<br />Stage (2D simulation)<br />Controller<br />(client)<br />Player<br />(server)<br />Controller<br />(client)<br />Controller<br />(client)<br />Player<br />(server)<br />Controller<br />(client)<br />TCP, UDP,<br />Jini, Ice<br />RS232, USB, 1394, TCP, Shared Mem<br />© Brian Gerkey<br />
  34. 34. Human Robot Interaction<br />Easy to understand Graphical User Interface (GUI)<br />Video-centric GUI <br />Popular X-Box controller<br />
  35. 35. SLAM<br />SLAM: Simultaneous Localization And Mapping<br />Generating a map of unknown environment while localizing the mapping system within that map<br />
  36. 36. Navigation and SLAM<br />SLAM<br />Mapping<br />Localization<br />Integrated approaches<br />Active localization<br />Exploration<br />Motion control<br />© Makarenko et al<br />
  37. 37. The SLAM Problem<br />Global map<br />(what robot thinks)<br />Ground truth map<br />(what happens)<br />Local map<br />(what robot sees)<br />Given <br />Robot controls<br />Nearby measurements<br />Estimate<br />Robot state (position, orientation)<br />Map of world features<br />
  38. 38. Structure of SLAM Problem<br />mj<br />Zk,j<br />mi<br />Zk-1,i<br />Xk-1<br />Xk<br />uk<br />
  39. 39. Why SLAM is hard?<br />Chicken and egg problem: robot path and map are both unknown<br />In the real world, the mapping between observations and landmarks is unknown<br />Picking wrong data associations can have catastrophic consequences<br />Pose error correlates data associations<br />Robot pose<br />uncertainty<br />
  40. 40. Questions<br />Thank You!<br />