1 of 26

## Similar to pipe lines lec 2.pptx

Unit6 energy loss in pipelines
Unit6 energy loss in pipelinesMalaysia
Β
Pipeline Design Project
Pipeline Design ProjectDaniel Kerkhoff
Β
Hydraulics lecture note
Hydraulics lecture note Babagana Sheriff
Β
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanicsasghar123456
Β
pipe lines lec 5.pdf
pipe lines lec 5.pdfamirashraf61
Β
Uniform flow computations in open channel flow
Uniform flow computations in open channel flowASHWINIKUMAR359
Β
Answers assignment 5 open channel hydraulics-fluid mechanics
Answers assignment 5 open channel hydraulics-fluid mechanicsasghar123456
Β
Problema 4
Problema 4yeisyynojos
Β
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1jntuworld
Β
Solved Examples in fluid mechanics final
Solved Examples in fluid mechanics finalDr. Ezzat Elsayed Gomaa
Β
Ψ­ΩΩΩ ΩΨ³Ψ§ΩΩΩ ΩΩΩΨ§Ψͺ ΩΩΨͺΩΨ­Ω 100 Ψ΅
Ψ­ΩΩΩ ΩΨ³Ψ§ΩΩΩ ΩΩΩΨ§Ψͺ ΩΩΨͺΩΨ­Ω 100 Ψ΅shaymaa17
Β
Hydraulic Exponent for Critical flow computation
Hydraulic Exponent for Critical flow computationZeeshanSoomro7
Β
PROBLEMA 3
PROBLEMA 3 yeisyynojos
Β
Solved problems pipe flow final 1.doc
Solved problems pipe flow final 1.docDr. Ezzat Elsayed Gomaa
Β
Design of Lined Channels.pptx
Design of Lined Channels.pptxTahseensanai
Β
friction loss along a pipe
friction loss along a pipeSaif al-din ali
Β
pipe line calculation
pipe line calculationjatinar123
Β
Midterm f09 solution
Midterm f09 solutionmohan sc
Β

### Similar to pipe lines lec 2.pptx(20)

Unit6 energy loss in pipelines
Unit6 energy loss in pipelines
Β
Pipeline Design Project
Pipeline Design Project
Β
Hydraulics lecture note
Hydraulics lecture note
Β
Answers assignment 3 integral methods-fluid mechanics
Answers assignment 3 integral methods-fluid mechanics
Β
pipe lines lec 5.pdf
pipe lines lec 5.pdf
Β
Uniform flow computations in open channel flow
Uniform flow computations in open channel flow
Β
Answers assignment 5 open channel hydraulics-fluid mechanics
Answers assignment 5 open channel hydraulics-fluid mechanics
Β
solved problems in hydrostatic
solved problems in hydrostatic
Β
Problema 4
Problema 4
Β
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1
Β
Solved Examples in fluid mechanics final
Solved Examples in fluid mechanics final
Β
Ψ­ΩΩΩ ΩΨ³Ψ§ΩΩΩ ΩΩΩΨ§Ψͺ ΩΩΨͺΩΨ­Ω 100 Ψ΅
Ψ­ΩΩΩ ΩΨ³Ψ§ΩΩΩ ΩΩΩΨ§Ψͺ ΩΩΨͺΩΨ­Ω 100 Ψ΅
Β
Hydraulic Exponent for Critical flow computation
Hydraulic Exponent for Critical flow computation
Β
PROBLEMA 3
PROBLEMA 3
Β
Solved problems pipe flow final 1.doc
Solved problems pipe flow final 1.doc
Β
Design of Lined Channels.pptx
Design of Lined Channels.pptx
Β
friction loss along a pipe
friction loss along a pipe
Β
pipe line calculation
pipe line calculation
Β
51495
51495
Β
Midterm f09 solution
Midterm f09 solution
Β

"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
Β
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...Erbil Polytechnic University
Β
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).pptNoman khan
Β
priority interrupt computer organization
priority interrupt computer organizationchnrketan
Β
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTIONjhunlian
Β
Virtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
Β
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdfisabel213075
Β
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdfalene1
Β
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTESkarthi keyan
Β
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.pptJohnWilliam111370
Β
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMSsandhya757531
Β
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of ActionMebane Rash
Β
Main Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
Β
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptxsiddharthjain2303
Β
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overviewsandhya757531
Β
Β
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subjectGayathriM270621
Β
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdfDrew Moseley
Β
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Communityprachaibot
Β
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdfShreyas Pandit
Β

"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
Β
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Comparative study of High-rise Building Using ETABS,SAP200 and SAFE., SAFE an...
Β
Forming section troubleshooting checklist for improving wire life (1).ppt
Forming section troubleshooting checklist for improving wire life (1).ppt
Β
priority interrupt computer organization
priority interrupt computer organization
Β
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
THE SENDAI FRAMEWORK FOR DISASTER RISK REDUCTION
Β
Virtual memory management in Operating System
Virtual memory management in Operating System
Β
List of Accredited Concrete Batching Plant.pdf
List of Accredited Concrete Batching Plant.pdf
Β
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Comprehensive energy systems.pdf Comprehensive energy systems.pdf
Β
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
CME 397 - SURFACE ENGINEERING - UNIT 1 FULL NOTES
Β
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
ROBOETHICS-CCS345 ETHICS AND ARTIFICIAL INTELLIGENCE.ppt
Β
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
High Voltage Engineering- OVER VOLTAGES IN ELECTRICAL POWER SYSTEMS
Β
US Department of Education FAFSA Week of Action
US Department of Education FAFSA Week of Action
Β
Main Memory Management in Operating System
Main Memory Management in Operating System
Β
Energy Awareness training ppt for manufacturing process.pptx
Energy Awareness training ppt for manufacturing process.pptx
Β
Artificial Intelligence in Power System overview
Artificial Intelligence in Power System overview
Β
Β
STATE TRANSITION DIAGRAM in psoc subject
STATE TRANSITION DIAGRAM in psoc subject
Β
Immutable Image-Based Operating Systems - EW2024.pdf
Immutable Image-Based Operating Systems - EW2024.pdf
Β
Prach: A Feature-Rich Platform Empowering the Autism Community
Prach: A Feature-Rich Platform Empowering the Autism Community
Β
Theory of Machine Notes / Lecture Material .pdf
Theory of Machine Notes / Lecture Material .pdf
Β

### pipe lines lec 2.pptx

• 1. BASIC PRINCIPLES OF PIPE FLOW Dr/ Ahmed safwat Amir Ashraf sayed
• 2. Pipe Flow Under Siphon Action A pipeline that rises above its hydraulic gradient line is termed a siphon head loss due to friction is large and the form losses can be neglected. Thus, the hydraulic gradient line is a straight line that joins the water surfaces at points A and B. Pipe Flow Under Siphon Action
• 3. If the hydraulic gradient line is above the centerline of pipe: the water pressure is above atmospheric. if it is below the centerline of the pipe: the pressure is below atmospheric.
• 4. 1- points b and c, the water pressure is atmospheric. 2- between b and c it is less than atmospheric. 3- At the highest point e, the water pressure is the lowest. 4- If the pressure head at point e is less than - 2.5 m, the water starts vaporizing.
• 5. Example 2.2A. A pumping system with different pipe fittings is shown in Fig. 2.15. Calculate residual pressure head at the end of the pipe outlet if the pump is generating an input head of 50 m at 0.1 m3 /s discharge. The CI pipe diameter π· is 0.3 m. The contraction size at point 3 is 0.15 m; pipe size between points 6 and 7 is 0.15 m; and confusor outlet size π = 0.15 m. The rotary valve at point 5 is fully open. Consider the following pipe lengths between points: Points 1 and 2 = 100 m, points 2 and 3 = 0.5 m; and points 3 and 4 = 0.5 m Points 4 and 6 = 400 m, points 6 and 7 = 20 m; and points 7 and 8 = 100 m
• 6. Head loss between points 1 and 2. Pipe length 100 m, flow 0.1 m3 /s, and pipe diameter 0.3 m. Using Eq. (2.4b), π£ for 20βC is 1.012 Γ 10β6 m2/s, similarly using Eq. (2.4c), Reynolds number π = 419,459. Using Table 2.1 for CI pipes, π is 0.25 π¦π¦. The friction factor π is calculated using Eq. (2.6b) = 0.0197. Using Eq. 2.3b the head loss βπ12 in pipe (1 β 2) is ππππ = πππ³πΈπ ππππ«π = π Γ π. ππππ Γ πππ Γ π. ππ π. ππππππ Γ π. ππ Γ π. ππ = π. πππ π¦ Solution
• 7. 2. Head loss between points 2 and 3 (a contraction transition). For π· = 0.3, π = 0.15, and transition length = 0.5 m, the contraction angle πΌπ can be calculated using Eq. (2.13b): πΌπ = 2tanβ1 π·1 β π·2 2πΏ = 2tanβ1 0.3 β 0.15 2 Γ 0.5 = 0.298 radians . Using Eq. (2.13a), the form-loss coefficient is ππ = 0.315πΌπ 1/3 = 0.315 Γ 0.2981/3 = 0.210 Using Eq. (2.12b), the head loss βπ23 = 0.193 m.
• 8. 3. Head loss between points 3 and 4 (an expansion transition). For π = 0.15, π· = 0.3, the expansion ratio π = 2, and transition length = 0.5 m. Using Eq. (2.13d), the expansion angle πΌπ = 0.298 radians. Using Eq. (2.13c), the form-loss coefficient = 0.716. Using Eq. (2.12b), the head loss βπ34 = 0.657 m. 4. Headloss between points 4 and 6. Using Eq. (2.4c), with π = 1.012 Γ 10β6 m2 /s, diameter 0.3, and discharge 0.1 m3 /s, the Reynolds number = 419,459. With π = 0.25 mm using Eq. (2.6b), π = 0.0197. Thus, for pipe length 400 m, using Eq. (2.3b), head loss βπ = 2.681 m.
• 9. 5. Head loss at point 5 due to rotary valve (fully open). For fully open valve πΌ = 0. Using Eq. (2.11), form-loss coefficient ππ = 0 and using Eq. (2.7b), the form loss βπ = 0.0 m. 6. Head loss at point 6 due to abrupt contraction. For π· = 0.3 m and π = 0.15 m, using Eq. (2.14b), the form-loss coefficient ππ = 0.5 1 β 0.15 0.3 2.35 = 0.402. Using Eq. (2.12b), the form loss βπ = 0.369 m.
• 10. Example 2.2A continued 7. Head loss in pipe between points 6 and 7. Pipe length = 20 m, pipe diameter = 0.15 m, and roughness height = 0.25 mm. Reynolds number = 838,914 and pipe friction factor π = 0.0227, head loss βπ67 = 4.930 m. 8. Head loss at point 7 (an abrupt expansion). An abrupt expansion from 0.15 m pipe size to 0.30 m. Using Eq. (2.14a), ππ = 1 and using Eq. (2.12b), βπ = 0.918 m.
• 11. Head loss in pipe between points 7 and 8. Pipe length = 100 m, pipe diameter = 0.30 m, and roughness height = 0.25 mm. Reynolds number = 423,144 and pipe friction factor π = 0.0197. Head loss βπ78 = 0.670 m. Head loss at outlet point 8 (confusor outlet). Using Eq. (2.17), the form-loss coefficient ππ = 4.5 π· π β 3.5 = 4.5 Γ 0.30 0.15 β 3.5 = 5.5. Using Eq. (2.12 b), βπ = 0.560 m. Total head loss hL = 0.670 + 0.193 + 0.657 + 2.681 + 0.369 + 0 + 4.930 + 0.918 + 0.670 + 0.560 = 11.648 m: Thus, the residual pressure at the end of the pipe outlet = 50 - 11.648 = 38.352 m
• 12. Example 2.2B. Design an cxpansion for the pipc diametcrs 1.0 m and 2.0 m over a distance of 2 m for Fig. 2.9. Solution Calculating of optimal transition profile. The geometry profile is π·1 = 1.0 m, π·2 = 2.0 m, and πΏ = 2.0 m. Substituting various values of π₯, the corresponding values of π· and are tabulated in Table 2.3. π₯ π· (optimal) π· (linear) 0.0 1.000 1.000 0.2 1.019 1.100 0.4 1.078 1.200 0.6 1.180 1.300 0.8 1.326 1.400 1.0 1.500 1.500 1.2 1.674 1.600 1.4 1.820 1.700 1.6 1.922 1.800 1.8 1.981 1.900 2.0 2.000 2.000 TABLE 2.3. Pipe Transition Computations π versus π«
• 13. 2.3. PIPE FLOW PROBLEMS Nodal Head Problem Discharge Problem Diameter Problem Analysis problem Design and ansysis problem Analysis problem
• 14. 2.3.1.Nodal Head Problem In the nodal head problem, the known quantities are πΏ, π·, βπΏ, π, π, π£, and ππ. Using Eqs. (2.2b) and (2.7b), the nodal head β2 (as shown in Fig. 2.1) is obtained as ππ = ππ + ππ β ππ β ππ + ππ³ π« ππΈπ ππππ«π . (2:20)
• 15. 2.3.2. Discharge Problem For a long pipeline, form losses can be neglected. Thus, in this case the known quantities are πΏ, π·, βπ, π, and π. Swamee and Jain (1976) gave the following solution for turbulent flow through such a pipeline: Equation (2.21a) is exact. For laminar flow, πΈ = βπ. ππππ«π ππ« ππ π³ π₯ π πΊ π. ππ« + π. πππ π« ππ« ππ π³ πΈ = πππ«πππ πππππ³ . (2:21a) (2:21b) For laminar flow
• 16. Swamee and Swamee (2008) gave the following equation for pipe discharge that is valid under laminar, transition, and turbulent flow conditions: πΈ = π«π ππ« ππ π³ ππππ ππ« ππ« ππ π³ π π +π. πππ ππππ π« ππ« ππ π³ π β π₯ π πΊ π. ππ« + π. ππππ π« ππ« ππ π³ βπ βπ.ππ Equation (2.21c) is almost exact as the maximum error in the equation is 0.1%. πΈ = (2:21c)
• 17. 2.3.3. Diameter Problem In this problem. the known quantities are L.h_f,Ξ΅,Q. and v. For a pumping main, head loss is not known, and one has to select the optimal value of head loss by minimizing the cost. This has been dealt with in Chapter 6. However, for turbulent flow in a long gravity main, Swamee and Jain (1976) obtained the following solution for the pipe diameter: π« = π. ππ πΊπ.ππ π³πΈπ πππ π.ππ + ππΈπ.π π³ πππ π.π π.ππ (2:22a)
• 18. In general, the errors involved in Eq. (2.22a) are less than 1.5%. However, the maximum error occurring near transition range is about 3%. For laminar flow, the Hagen Poiseuille equation gives the diameter as π« = πππππΈπ³ ππππ π.ππ (2:22b) 2.3.3. Diameter Problem
• 19. Swamee and Swamee (2008) gave the following equation for pipe diameter that is valid under laminar, transition, and turbulent flow conditions Equation (2.22c) yields π· within 2.75%. However, close to transition range, the error is around 4%. π« = π. ππ πππ. ππ ππ³πΈ πππ π.ππ + πΊπ.ππ π³πΈπ πππ π.ππ + ππΈπ.π π³ πππ π.π π.ππ (2:22c)
• 20. Example 2.3. As shown in Fig. 2.16, a discharge of 0.1 m3 /s flows through a CI pipe main of 1000 m in length having a pipe diameter 0.3 m. A sluice valve of 0.3 m size is placed close to point B. The elevations of points A and B are 10 m and 5 m, respectively. Assume water temperature as 20C. Calculate: (A) Terminal pressure h2 at point B and head loss in the pipe if terminal pressure h1 at point A is 25 m. (B) The discharge in the pipe if the head loss is 10 m. (C) The CI gravity main diameter if the head loss in the pipe is 10 m and a discharge of 0.1 m3 /s flows in the pipe.
• 21.
• 22. solution A) The terminal pressure h2 at point B can be calculated using Eq. (2.20). The friction factor f can be calculated applying Eq. (2.6a) and the roughness height of CI pipe = 0.25 mm is obtained from Table 2.1. The form-loss coefficient for sluice valve from Table 2.2 is 0.15. The viscosity of water at 208C can be calculated using Eq. (2.4b). The coefficient of surface resistance depends on the Reynolds number R of the flow: πΉ = ππΈ πππ« = πππ, πππ. Thus, substituting values in Eq. (2.6a), the friction factor π = ππ π π + π. π π₯ π πΊ π. ππ« + π. ππ ππ.π β ππππ π π βππ π.πππ = π. ππππ
• 23. solution Using Eq- (2.20), the terminal head β2 at point π΅ is ππ = ππ + ππ β ππ β ππ + ππ³ π« ππΈπ ππππ«π ππ = ππ + ππ β π β π. ππ + π. ππππ Γ ππππ π. π π Γ π. ππ π. ππππππ Γ π. ππ Γ π. ππ ππ = = ππ β (π. πππ + π. πππ) = ππ. πππ π¦.
• 24. = πΈ = βπ. ππππ«π ππ« ππ π³ π₯ π πΊ π. ππ« + π. πππ π« ππ«π π³ = = βπ. πππ Γ π. ππ π. ππ Γ (ππ ππππ π₯ π π. ππ Γ ππβπ π. π Γ π. π . = = = π. πππ ππ π solution (B) If the total head loss in the pipe is predecided equal to 10 m, the discharge in Cl pipe of size 0.3 m can be calculated using Eq. ( 2.21a ): + π. ππ Γ π. πππ Γ ππβπ π. π ) π. ππ Γ π. π Γ (ππ ππππ
• 25. solution (C) Using Eq. (2.22a), the gravity main diameter for preselected head loss of 10 m and known pipe discharge 0.1 m3 /s is π« = π. ππ πΊπ.ππ π³πΈπ πππ π.ππ + ππΈπ.π π³ πππ π.π π.ππ = π. ππ π. ππππππ.ππ ππππ Γ π. ππ π. ππ Γ ππ π.ππ + π. πππ Γ ππβπ = Γ π. ππ.π ππππ π. ππ Γ ππ π.π π.ππ = = Also, if head loss is considered = 6.72 m, the pipe diameter is 0.306 m and flow is 0.1 m3 /s. = π. πππ π¦.
Current LanguageEnglish
EspaΓ±ol
Portugues
FranΓ§ais
Deutsche
Β© 2024 SlideShare from Scribd