SlideShare a Scribd company logo

why! check the codes again please!! the question was utilizing ma.pdf

why?! check the codes again please!! the question was utilizing machine learning in detecting fraud for credit card by logistic regression in artificial intelligence I A Import necessary tibnaries import pandas as pd from sklearn. model_selection import train_test_split from sklearn. linear_ nodel import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix * Load the dataset data = pd.read_csv ( "creditcard.csv') * Split the dotoset into training and testing sets X_train, X_test, \( y_{\text {_train, }} y_{\text {_test = }} \) train_test_split(data.drop ("Class', axise1), data[ Cllass '], test_size-e.3, random_state-42 - Create the Logistic regression model model = Logistichegression( ) * Train the modet on the training data model.fit (x_train, \( y_{\text {_train) }} \) N Noke predictions on the testing data ypred= model, predict (xtest ) W Evaluate the performance of the model print ( "Accuracy Score:", accuracy_score (y_test, \( y_{\text {_pred) }} \) ) print ("Confusion Matrix: in", confusion_matrix(y_test, \( y_{\text {"_pred) }} \) )) FileNotfoundtrror Ce11 In[s], 1ine Traceback (nost recent call last) 5 froe sklearn, netrics import accuracy_score, confusion_natrix 7 ioad the datanet 10 i 5 plit the dataset into training and testing sets -statese42) unents. chocalsi, decorate.clocalis. wrapper (*args, "*kargs) 325 if len(arg5) i num_allow_args: stacklevelwind_stack_level(), uffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle dupe_cols, dtype, ongine, convecters, true values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, heep_default_na, na_filter. verbosa, skip.b FileNotFoundError: [Errno 2] No such file or directory: 'creditcard.csv'.

1 of 1
Download to read offline
why?! check the codes again please!!
the question was utilizing machine learning in detecting fraud for credit card by logistic
regression in artificial intelligence I A Import necessary tibnaries import pandas as pd from
sklearn. model_selection import train_test_split from sklearn. linear_ nodel import
LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix * Load the
dataset data = pd.read_csv ( "creditcard.csv') * Split the dotoset into training and testing sets
X_train, X_test, ( y_{text {_train, }} y_{text {_test = }} ) train_test_split(data.drop ("Class',
axise1), data[ Cllass '], test_size-e.3, random_state-42 - Create the Logistic regression model
model = Logistichegression( ) * Train the modet on the training data model.fit (x_train, (
y_{text {_train) }} ) N Noke predictions on the testing data ypred= model, predict (xtest ) W
Evaluate the performance of the model print ( "Accuracy Score:", accuracy_score (y_test, (
y_{text {_pred) }} ) ) print ("Confusion Matrix: in", confusion_matrix(y_test, ( y_{text
{"_pred) }} ) ))
FileNotfoundtrror Ce11 In[s], 1ine Traceback (nost recent call last) 5 froe sklearn, netrics import
accuracy_score, confusion_natrix 7 ioad the datanet 10 i 5 plit the dataset into training and
testing sets -statese42) unents. chocalsi, decorate.clocalis. wrapper (*args, "*kargs) 325 if
len(arg5) i num_allow_args: stacklevelwind_stack_level(), uffer, sep, delimiter, header, names,
index_col, usecols, squeeze, prefix, mangle dupe_cols, dtype, ongine, convecters, true values,
false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, heep_default_na,
na_filter. verbosa, skip.b
FileNotFoundError: [Errno 2] No such file or directory: 'creditcard.csv'

Recommended

Competition 1 (blog 1)
Competition 1 (blog 1)Competition 1 (blog 1)
Competition 1 (blog 1)TarunPaparaju
 
- K-Nearest Neighbours Classifier Now we can start building the actua.pdf
- K-Nearest Neighbours Classifier Now we can start building the actua.pdf- K-Nearest Neighbours Classifier Now we can start building the actua.pdf
- K-Nearest Neighbours Classifier Now we can start building the actua.pdfinfo893569
 
# Produce the features of a testing data instance X_new = np. arr.pdf
# Produce the features of a testing data instance X_new = np. arr.pdf# Produce the features of a testing data instance X_new = np. arr.pdf
# Produce the features of a testing data instance X_new = np. arr.pdfinfo893569
 
Machine Learning Algorithms
Machine Learning AlgorithmsMachine Learning Algorithms
Machine Learning Algorithmshichem felouat
 
I am working on this code for my project- but the accuracy is 0-951601.docx
I am working on this code for my project- but the accuracy is 0-951601.docxI am working on this code for my project- but the accuracy is 0-951601.docx
I am working on this code for my project- but the accuracy is 0-951601.docxRyanEAcTuckern
 
My code from sklearn-datasets import load_diabetes from sklearn-model.pdf
My code  from sklearn-datasets import load_diabetes from sklearn-model.pdfMy code  from sklearn-datasets import load_diabetes from sklearn-model.pdf
My code from sklearn-datasets import load_diabetes from sklearn-model.pdfKOCHHARHOSY
 
Nyc open-data-2015-andvanced-sklearn-expanded
Nyc open-data-2015-andvanced-sklearn-expandedNyc open-data-2015-andvanced-sklearn-expanded
Nyc open-data-2015-andvanced-sklearn-expandedVivian S. Zhang
 

More Related Content

Similar to why! check the codes again please!! the question was utilizing ma.pdf

X_train y_trainX_test y_testX_valid y_validtrainin.docx
X_train y_trainX_test y_testX_valid y_validtrainin.docxX_train y_trainX_test y_testX_valid y_validtrainin.docx
X_train y_trainX_test y_testX_valid y_validtrainin.docxtroutmanboris
 
Q2 I have code I have built- within I have a explained variance score.pdf
Q2 I have code I have built- within I have a explained variance score.pdfQ2 I have code I have built- within I have a explained variance score.pdf
Q2 I have code I have built- within I have a explained variance score.pdf360transfashion
 
Training course lect2
Training course lect2Training course lect2
Training course lect2Noor Dhiya
 
For this practice work- you are to determine which model is best for p.pdf
For this practice work- you are to determine which model is best for p.pdfFor this practice work- you are to determine which model is best for p.pdf
For this practice work- you are to determine which model is best for p.pdfMax3zSLangdonj
 
Unsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at ScaleUnsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at ScaleAaron (Ari) Bornstein
 
logistic regression with python and R
logistic regression with python and Rlogistic regression with python and R
logistic regression with python and RAkhilesh Joshi
 
Twitter sentiment analysis
Twitter sentiment analysisTwitter sentiment analysis
Twitter sentiment analysisYasas Senarath
 
Metric-learn, a Scikit-learn compatible package
Metric-learn, a Scikit-learn compatible packageMetric-learn, a Scikit-learn compatible package
Metric-learn, a Scikit-learn compatible packageWilliam de Vazelhes
 
Data mining with caret package
Data mining with caret packageData mining with caret package
Data mining with caret packageVivian S. Zhang
 
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)Thomas Fan
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceLviv Startup Club
 
Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleYvonne K. Matos
 
Approaching (almost) Any Machine Learning Problem (kaggledays dubai)
Approaching (almost) Any Machine Learning Problem (kaggledays dubai)Approaching (almost) Any Machine Learning Problem (kaggledays dubai)
Approaching (almost) Any Machine Learning Problem (kaggledays dubai)Abhishek Thakur
 
Converting Scikit-Learn to PMML
Converting Scikit-Learn to PMMLConverting Scikit-Learn to PMML
Converting Scikit-Learn to PMMLVillu Ruusmann
 
maXbox starter65 machinelearning3
maXbox starter65 machinelearning3maXbox starter65 machinelearning3
maXbox starter65 machinelearning3Max Kleiner
 
Can someone please provide an analysis of the veracity of this model-.pdf
Can someone please provide an analysis of the veracity of this model-.pdfCan someone please provide an analysis of the veracity of this model-.pdf
Can someone please provide an analysis of the veracity of this model-.pdfvinaythemodel
 
The input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docx
The input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docxThe input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docx
The input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docxGordonB0fPaigey
 

Similar to why! check the codes again please!! the question was utilizing ma.pdf (20)

X_train y_trainX_test y_testX_valid y_validtrainin.docx
X_train y_trainX_test y_testX_valid y_validtrainin.docxX_train y_trainX_test y_testX_valid y_validtrainin.docx
X_train y_trainX_test y_testX_valid y_validtrainin.docx
 
knn classification
knn classificationknn classification
knn classification
 
Q2 I have code I have built- within I have a explained variance score.pdf
Q2 I have code I have built- within I have a explained variance score.pdfQ2 I have code I have built- within I have a explained variance score.pdf
Q2 I have code I have built- within I have a explained variance score.pdf
 
Training course lect2
Training course lect2Training course lect2
Training course lect2
 
For this practice work- you are to determine which model is best for p.pdf
For this practice work- you are to determine which model is best for p.pdfFor this practice work- you are to determine which model is best for p.pdf
For this practice work- you are to determine which model is best for p.pdf
 
Unsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at ScaleUnsupervised Aspect Based Sentiment Analysis at Scale
Unsupervised Aspect Based Sentiment Analysis at Scale
 
logistic regression with python and R
logistic regression with python and Rlogistic regression with python and R
logistic regression with python and R
 
Twitter sentiment analysis
Twitter sentiment analysisTwitter sentiment analysis
Twitter sentiment analysis
 
BPstudy sklearn 20180925
BPstudy sklearn 20180925BPstudy sklearn 20180925
BPstudy sklearn 20180925
 
Metric-learn, a Scikit-learn compatible package
Metric-learn, a Scikit-learn compatible packageMetric-learn, a Scikit-learn compatible package
Metric-learn, a Scikit-learn compatible package
 
Data mining with caret package
Data mining with caret packageData mining with caret package
Data mining with caret package
 
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
Pydata DC 2018 (Skorch - A Union of Scikit-learn and PyTorch)
 
Naïve Bayes.pptx
Naïve Bayes.pptxNaïve Bayes.pptx
Naïve Bayes.pptx
 
Viktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning ServiceViktor Tsykunov: Azure Machine Learning Service
Viktor Tsykunov: Azure Machine Learning Service
 
Learning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and KaggleLearning Predictive Modeling with TSA and Kaggle
Learning Predictive Modeling with TSA and Kaggle
 
Approaching (almost) Any Machine Learning Problem (kaggledays dubai)
Approaching (almost) Any Machine Learning Problem (kaggledays dubai)Approaching (almost) Any Machine Learning Problem (kaggledays dubai)
Approaching (almost) Any Machine Learning Problem (kaggledays dubai)
 
Converting Scikit-Learn to PMML
Converting Scikit-Learn to PMMLConverting Scikit-Learn to PMML
Converting Scikit-Learn to PMML
 
maXbox starter65 machinelearning3
maXbox starter65 machinelearning3maXbox starter65 machinelearning3
maXbox starter65 machinelearning3
 
Can someone please provide an analysis of the veracity of this model-.pdf
Can someone please provide an analysis of the veracity of this model-.pdfCan someone please provide an analysis of the veracity of this model-.pdf
Can someone please provide an analysis of the veracity of this model-.pdf
 
The input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docx
The input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docxThe input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docx
The input cata x1-x2-y can be loaded from fie- -x1_x2_y_circle2-csv- W.docx
 

More from amikoenterprises

Write a c program to score the paper-rock-scissors game. Each of two.pdf
Write a c program to score the paper-rock-scissors game. Each of two.pdfWrite a c program to score the paper-rock-scissors game. Each of two.pdf
Write a c program to score the paper-rock-scissors game. Each of two.pdfamikoenterprises
 
Write a C function to reverse the elements of character array. Ask a.pdf
Write a C function to reverse the elements of character array. Ask a.pdfWrite a C function to reverse the elements of character array. Ask a.pdf
Write a C function to reverse the elements of character array. Ask a.pdfamikoenterprises
 
write a C code for this question Problem 6 Replace All- 25 poin.pdf
write a C code for this question Problem 6 Replace All- 25 poin.pdfwrite a C code for this question Problem 6 Replace All- 25 poin.pdf
write a C code for this question Problem 6 Replace All- 25 poin.pdfamikoenterprises
 
write a 150 word minimum post about your least favorite business nar.pdf
write a 150 word minimum post about your least favorite business nar.pdfwrite a 150 word minimum post about your least favorite business nar.pdf
write a 150 word minimum post about your least favorite business nar.pdfamikoenterprises
 
Write a 700 word paper Discuss what is meant by the right to be f.pdf
Write a 700 word paper Discuss what is meant by the right to be f.pdfWrite a 700 word paper Discuss what is meant by the right to be f.pdf
Write a 700 word paper Discuss what is meant by the right to be f.pdfamikoenterprises
 
write a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdf
write a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdfwrite a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdf
write a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdfamikoenterprises
 
With the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdf
With the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdfWith the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdf
With the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdfamikoenterprises
 
Would like solutions to 1,2 and 3 please. Whirly Corporations contr.pdf
Would like solutions to 1,2 and 3 please. Whirly Corporations contr.pdfWould like solutions to 1,2 and 3 please. Whirly Corporations contr.pdf
Would like solutions to 1,2 and 3 please. Whirly Corporations contr.pdfamikoenterprises
 
With regard to Private Letter Rulings, taxpayer may a. cite them in .pdf
With regard to Private Letter Rulings, taxpayer may a. cite them in .pdfWith regard to Private Letter Rulings, taxpayer may a. cite them in .pdf
With regard to Private Letter Rulings, taxpayer may a. cite them in .pdfamikoenterprises
 
World Color operaba una planta de impresi�n. una pol�tica escrita de.pdf
World Color operaba una planta de impresi�n. una pol�tica escrita de.pdfWorld Color operaba una planta de impresi�n. una pol�tica escrita de.pdf
World Color operaba una planta de impresi�n. una pol�tica escrita de.pdfamikoenterprises
 
Work Package1 Create a logic problem for a real-world system with 4.pdf
Work Package1 Create a logic problem for a real-world system with 4.pdfWork Package1 Create a logic problem for a real-world system with 4.pdf
Work Package1 Create a logic problem for a real-world system with 4.pdfamikoenterprises
 
will get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdf
will get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdfwill get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdf
will get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdfamikoenterprises
 
word count 750 wordsLook for an article that examines the co.pdf
word count 750  wordsLook for an article that examines  the co.pdfword count 750  wordsLook for an article that examines  the co.pdf
word count 750 wordsLook for an article that examines the co.pdfamikoenterprises
 
Word facilita el formato de texto usando negrita, cursiva y subrayad.pdf
Word facilita el formato de texto usando negrita, cursiva y subrayad.pdfWord facilita el formato de texto usando negrita, cursiva y subrayad.pdf
Word facilita el formato de texto usando negrita, cursiva y subrayad.pdfamikoenterprises
 
Wooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdf
Wooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdfWooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdf
Wooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdfamikoenterprises
 
Wildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdf
Wildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdfWildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdf
Wildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdfamikoenterprises
 
Word count no more than 500 Provide your response(s) to 1. Res.pdf
Word count no more than 500 Provide your response(s) to 1. Res.pdfWord count no more than 500 Provide your response(s) to 1. Res.pdf
Word count no more than 500 Provide your response(s) to 1. Res.pdfamikoenterprises
 
Wonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdf
Wonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdfWonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdf
Wonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdfamikoenterprises
 
Wilcox Corporation inform� los siguientes resultados para sus primer.pdf
Wilcox Corporation inform� los siguientes resultados para sus primer.pdfWilcox Corporation inform� los siguientes resultados para sus primer.pdf
Wilcox Corporation inform� los siguientes resultados para sus primer.pdfamikoenterprises
 
wo populations of beetles have different reproductive organs that ar.pdf
wo populations of beetles have different reproductive organs that ar.pdfwo populations of beetles have different reproductive organs that ar.pdf
wo populations of beetles have different reproductive organs that ar.pdfamikoenterprises
 

More from amikoenterprises (20)

Write a c program to score the paper-rock-scissors game. Each of two.pdf
Write a c program to score the paper-rock-scissors game. Each of two.pdfWrite a c program to score the paper-rock-scissors game. Each of two.pdf
Write a c program to score the paper-rock-scissors game. Each of two.pdf
 
Write a C function to reverse the elements of character array. Ask a.pdf
Write a C function to reverse the elements of character array. Ask a.pdfWrite a C function to reverse the elements of character array. Ask a.pdf
Write a C function to reverse the elements of character array. Ask a.pdf
 
write a C code for this question Problem 6 Replace All- 25 poin.pdf
write a C code for this question Problem 6 Replace All- 25 poin.pdfwrite a C code for this question Problem 6 Replace All- 25 poin.pdf
write a C code for this question Problem 6 Replace All- 25 poin.pdf
 
write a 150 word minimum post about your least favorite business nar.pdf
write a 150 word minimum post about your least favorite business nar.pdfwrite a 150 word minimum post about your least favorite business nar.pdf
write a 150 word minimum post about your least favorite business nar.pdf
 
Write a 700 word paper Discuss what is meant by the right to be f.pdf
Write a 700 word paper Discuss what is meant by the right to be f.pdfWrite a 700 word paper Discuss what is meant by the right to be f.pdf
Write a 700 word paper Discuss what is meant by the right to be f.pdf
 
write a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdf
write a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdfwrite a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdf
write a 3-5 page report on Fetal Alcohol Spectrum Disorder, describi.pdf
 
With the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdf
With the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdfWith the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdf
With the following class, ArrayBag, and BagInterface#ifndef _BAG_.pdf
 
Would like solutions to 1,2 and 3 please. Whirly Corporations contr.pdf
Would like solutions to 1,2 and 3 please. Whirly Corporations contr.pdfWould like solutions to 1,2 and 3 please. Whirly Corporations contr.pdf
Would like solutions to 1,2 and 3 please. Whirly Corporations contr.pdf
 
With regard to Private Letter Rulings, taxpayer may a. cite them in .pdf
With regard to Private Letter Rulings, taxpayer may a. cite them in .pdfWith regard to Private Letter Rulings, taxpayer may a. cite them in .pdf
With regard to Private Letter Rulings, taxpayer may a. cite them in .pdf
 
World Color operaba una planta de impresi�n. una pol�tica escrita de.pdf
World Color operaba una planta de impresi�n. una pol�tica escrita de.pdfWorld Color operaba una planta de impresi�n. una pol�tica escrita de.pdf
World Color operaba una planta de impresi�n. una pol�tica escrita de.pdf
 
Work Package1 Create a logic problem for a real-world system with 4.pdf
Work Package1 Create a logic problem for a real-world system with 4.pdfWork Package1 Create a logic problem for a real-world system with 4.pdf
Work Package1 Create a logic problem for a real-world system with 4.pdf
 
will get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdf
will get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdfwill get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdf
will get LOTS of upvotes QUICK if correct Na�ve Bayes Classifier. .pdf
 
word count 750 wordsLook for an article that examines the co.pdf
word count 750  wordsLook for an article that examines  the co.pdfword count 750  wordsLook for an article that examines  the co.pdf
word count 750 wordsLook for an article that examines the co.pdf
 
Word facilita el formato de texto usando negrita, cursiva y subrayad.pdf
Word facilita el formato de texto usando negrita, cursiva y subrayad.pdfWord facilita el formato de texto usando negrita, cursiva y subrayad.pdf
Word facilita el formato de texto usando negrita, cursiva y subrayad.pdf
 
Wooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdf
Wooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdfWooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdf
Wooden Stuff es un minorista de muebles que opera en Cambridge, Bost.pdf
 
Wildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdf
Wildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdfWildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdf
Wildhorse Corporation tiene 350 000 acciones ordinarias en circulaci.pdf
 
Word count no more than 500 Provide your response(s) to 1. Res.pdf
Word count no more than 500 Provide your response(s) to 1. Res.pdfWord count no more than 500 Provide your response(s) to 1. Res.pdf
Word count no more than 500 Provide your response(s) to 1. Res.pdf
 
Wonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdf
Wonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdfWonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdf
Wonderland y Neverland son pa�ses vecinos. Sin embargo, las personas.pdf
 
Wilcox Corporation inform� los siguientes resultados para sus primer.pdf
Wilcox Corporation inform� los siguientes resultados para sus primer.pdfWilcox Corporation inform� los siguientes resultados para sus primer.pdf
Wilcox Corporation inform� los siguientes resultados para sus primer.pdf
 
wo populations of beetles have different reproductive organs that ar.pdf
wo populations of beetles have different reproductive organs that ar.pdfwo populations of beetles have different reproductive organs that ar.pdf
wo populations of beetles have different reproductive organs that ar.pdf
 

Recently uploaded

Food Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in CanvasFood Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in CanvasAlexandraSwartzwelde
 
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTScatch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTSCarlaNicolas7
 
Data Modeling - Entity Relationship Diagrams-1.pdf
Data Modeling - Entity Relationship Diagrams-1.pdfData Modeling - Entity Relationship Diagrams-1.pdf
Data Modeling - Entity Relationship Diagrams-1.pdfChristalin Nelson
 
UniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tourUniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tourUSC_Library
 
Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...
Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...
Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...EduSkills OECD
 
Creative, Technical, and Academic Writing
Creative, Technical, and Academic WritingCreative, Technical, and Academic Writing
Creative, Technical, and Academic WritingMYDA ANGELICA SUAN
 
Shapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley DiscussionShapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley DiscussionTushar Tank
 
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfWriting Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfMr Bounab Samir
 
2.20.24 Asian Americans and the Myth of the Model Minority.pptx
2.20.24 Asian Americans and the Myth of the Model Minority.pptx2.20.24 Asian Americans and the Myth of the Model Minority.pptx
2.20.24 Asian Americans and the Myth of the Model Minority.pptxMaryPotorti1
 
11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdf
11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdf11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdf
11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdfAynouraHamidova
 
New Features in the Odoo 17 Sales Module
New Features in  the Odoo 17 Sales ModuleNew Features in  the Odoo 17 Sales Module
New Features in the Odoo 17 Sales ModuleCeline George
 
IR introduction Introduction, Principle & Theory
IR introduction Introduction, Principle & TheoryIR introduction Introduction, Principle & Theory
IR introduction Introduction, Principle & Theorynivedithag131
 
The Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati RoyThe Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati RoyTrushali Dodiya
 
Chromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-PrincipleChromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-Principleblessipriyanka
 
Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...
Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...
Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...AKSHAYMAGAR17
 
GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...
GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...
GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...Nguyen Thanh Tu Collection
 
2.22.24 Black Nationalism and the Nation of Islam.pptx
2.22.24 Black Nationalism and the Nation of Islam.pptx2.22.24 Black Nationalism and the Nation of Islam.pptx
2.22.24 Black Nationalism and the Nation of Islam.pptxMaryPotorti1
 
Bayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with ExamplesBayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with ExamplesTushar Tank
 
ICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten NotesICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten NotesGauri S
 
Plant Genetic Resources, Germplasm, gene pool - Copy.pptx
Plant Genetic Resources, Germplasm, gene pool - Copy.pptxPlant Genetic Resources, Germplasm, gene pool - Copy.pptx
Plant Genetic Resources, Germplasm, gene pool - Copy.pptxAKSHAYMAGAR17
 

Recently uploaded (20)

Food Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in CanvasFood Web SlideShare for Ecology Notes Quiz in Canvas
Food Web SlideShare for Ecology Notes Quiz in Canvas
 
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTScatch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
catch-up-friday-ARALING PNLIPUNAN SOCIAL JUSTICE AND HUMAN RIGHTS
 
Data Modeling - Entity Relationship Diagrams-1.pdf
Data Modeling - Entity Relationship Diagrams-1.pdfData Modeling - Entity Relationship Diagrams-1.pdf
Data Modeling - Entity Relationship Diagrams-1.pdf
 
UniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tourUniSC Sunshine Coast library self-guided tour
UniSC Sunshine Coast library self-guided tour
 
Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...
Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...
Andreas Schleicher - 20 Feb 2024 - How pop music, podcasts, and Tik Tok are i...
 
Creative, Technical, and Academic Writing
Creative, Technical, and Academic WritingCreative, Technical, and Academic Writing
Creative, Technical, and Academic Writing
 
Shapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley DiscussionShapley Tech Talk - SHAP and Shapley Discussion
Shapley Tech Talk - SHAP and Shapley Discussion
 
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdfWriting Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
Writing Agony Letter & If type O+1 & Diphthongs + Text “Arab Science”.pdf
 
2.20.24 Asian Americans and the Myth of the Model Minority.pptx
2.20.24 Asian Americans and the Myth of the Model Minority.pptx2.20.24 Asian Americans and the Myth of the Model Minority.pptx
2.20.24 Asian Americans and the Myth of the Model Minority.pptx
 
11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdf
11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdf11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdf
11 CI SINIF SINAQLARI - 5-2023-Aynura-Hamidova.pdf
 
New Features in the Odoo 17 Sales Module
New Features in  the Odoo 17 Sales ModuleNew Features in  the Odoo 17 Sales Module
New Features in the Odoo 17 Sales Module
 
IR introduction Introduction, Principle & Theory
IR introduction Introduction, Principle & TheoryIR introduction Introduction, Principle & Theory
IR introduction Introduction, Principle & Theory
 
The Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati RoyThe Ministry of Utmost Happiness by Arundhati Roy
The Ministry of Utmost Happiness by Arundhati Roy
 
Chromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-PrincipleChromatography-Gas chromatography-Principle
Chromatography-Gas chromatography-Principle
 
Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...
Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...
Ideotype concept and climate resilient crop varieties for future- Wheat, Rice...
 
GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...
GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...
GIÁO ÁN TIẾNG ANH GLOBAL SUCCESS LỚP 11 (CẢ NĂM) THEO CÔNG VĂN 5512 (2 CỘT) N...
 
2.22.24 Black Nationalism and the Nation of Islam.pptx
2.22.24 Black Nationalism and the Nation of Islam.pptx2.22.24 Black Nationalism and the Nation of Islam.pptx
2.22.24 Black Nationalism and the Nation of Islam.pptx
 
Bayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with ExamplesBayesian Analysis Fundamentals with Examples
Bayesian Analysis Fundamentals with Examples
 
ICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten NotesICSE English Literature Class X Handwritten Notes
ICSE English Literature Class X Handwritten Notes
 
Plant Genetic Resources, Germplasm, gene pool - Copy.pptx
Plant Genetic Resources, Germplasm, gene pool - Copy.pptxPlant Genetic Resources, Germplasm, gene pool - Copy.pptx
Plant Genetic Resources, Germplasm, gene pool - Copy.pptx
 

why! check the codes again please!! the question was utilizing ma.pdf

  • 1. why?! check the codes again please!! the question was utilizing machine learning in detecting fraud for credit card by logistic regression in artificial intelligence I A Import necessary tibnaries import pandas as pd from sklearn. model_selection import train_test_split from sklearn. linear_ nodel import LogisticRegression from sklearn.metrics import accuracy_score, confusion_matrix * Load the dataset data = pd.read_csv ( "creditcard.csv') * Split the dotoset into training and testing sets X_train, X_test, ( y_{text {_train, }} y_{text {_test = }} ) train_test_split(data.drop ("Class', axise1), data[ Cllass '], test_size-e.3, random_state-42 - Create the Logistic regression model model = Logistichegression( ) * Train the modet on the training data model.fit (x_train, ( y_{text {_train) }} ) N Noke predictions on the testing data ypred= model, predict (xtest ) W Evaluate the performance of the model print ( "Accuracy Score:", accuracy_score (y_test, ( y_{text {_pred) }} ) ) print ("Confusion Matrix: in", confusion_matrix(y_test, ( y_{text {"_pred) }} ) )) FileNotfoundtrror Ce11 In[s], 1ine Traceback (nost recent call last) 5 froe sklearn, netrics import accuracy_score, confusion_natrix 7 ioad the datanet 10 i 5 plit the dataset into training and testing sets -statese42) unents. chocalsi, decorate.clocalis. wrapper (*args, "*kargs) 325 if len(arg5) i num_allow_args: stacklevelwind_stack_level(), uffer, sep, delimiter, header, names, index_col, usecols, squeeze, prefix, mangle dupe_cols, dtype, ongine, convecters, true values, false_values, skipinitialspace, skiprows, skipfooter, nrows, na_values, heep_default_na, na_filter. verbosa, skip.b FileNotFoundError: [Errno 2] No such file or directory: 'creditcard.csv'