Power allocation for statistical qo s provisioning in opportunistic multi relay df

224 views

Published on


Bulk Projects For sale

IEEE 2009-10-11-12-13 PAPERS AVILABLE.

We are providing low cost project for final year student projects.

Solved 2010 -2011 -2012 - 2013 IEEE in all the domain

Mobile : 8940956123

E-Mail : ambitlick@gmail.com,

INNOVATIVE TITLES ARE ALSO WELLCOME TO DO WITH US


For All BE/BTech, ME/MTech, MSC/MCA/MS , and diplamo graduates

PROJECT SUPPORTS & DELIVERABLES

•Project Abstract
•IEEE Paper
•PPT / Review Details
•Project Report
•Working Procedure in Video
•Screen Shots
•Materials & Books in CD
•Project Certification

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
224
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Power allocation for statistical qo s provisioning in opportunistic multi relay df

  1. 1. Ambit lick Solutions Mail Id: Ambitlick@gmail.com , Ambitlicksolutions@gmail.Com Power Allocation for Statistical QoS Provisioning in Opportunistic Multi-Relay DF Cognitive Networks In this letter, we propose a power allocation scheme for statistical quality-of-service (QoS) provisioning in multi-relay decode-and-forward (DF) cognitive networks (CN). By considering the direct link between the source and destination, the CN first chooses the transmission mode (direct transmission or relay transmission) based on the channel state information. Then, according to the determined transmission mode, efficient power allocation will be performed under the given QoS requirement, the average transmit and interference power constraints as well as the peak interference constraint. Our proposed power allocation scheme indicates that, in order to achieve the maximum throughput, at most two relays can be involved for the transmission. Simulation results show that our proposed scheme outperforms the max-min criterion and equal power allocation policy.

×