Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Presentacion Deltares

882 views

Published on

Feasibility study on ground motion monitoring with sun-synchronous
satellite Radar observations.

  • Be the first to comment

  • Be the first to like this

Presentacion Deltares

  1. 1. Observing the Earth from the space. A Satellite Radar Application Álvaro Muñoz Supervisor: Victor Hopman 30-Mar-10 1
  2. 2. Introduction • Background – Land reclamation – Soft unconsolidated soil – Expected subsidence – Need for monitoring 30-Mar-10 2
  3. 3. Introduction • Monitoring with Remote Sensing – Sensors apart from objects – Measurement--> Energy emitted/reflected 30-Mar-10 3
  4. 4. Introduction • Remote Sensing Techniques Active+Microwave+Satellite • Source of Energy • Active/Pasive • Electromagnetic Spectrum • Optical/Thermal/Microwave • Platform • Manned-Unmanned Plane/Helicopter • Kites • Satellite 30-Mar-10 4
  5. 5. Remote Sensing with Satellite RADAR • Radar Satellite Orbits – Elliptical – Near Polar – Sun-Synchronous – Height • 500-1000 km 30-Mar-10 5
  6. 6. Remote Sensing with Satellite RADAR • Active Sensor – Measurement: Backscattering 30-Mar-10 6
  7. 7. Remote Sensing with Satellite RADAR • Polarization Dependent – Example • Horizontal+Vertical polarization • Acquisition Geometry – Azimuth (along track) – Range (cross track) 30-Mar-10 7
  8. 8. Remote Sensing with Satellite RADAR • Synthetic Aperture Radar (SAR) 30-Mar-10 8
  9. 9. Remote Sensing with Satellite RADAR • Complex Waveform – Parameter: Amplitude • Conventional SAR • Complex Waveform – Parameter: Phase • Interferometric SAR 30-Mar-10 (InSAR) 9
  10. 10. Remote Sensing with Satellite RADAR • Interferometric SAR 30-Mar-10 10
  11. 11. Remote Sensing with Satellite RADAR • Interferometric SAR – Major limitation • Temporal decorrelation 30-Mar-10 11
  12. 12. Remote Sensing with Satellite RADAR • Persistent Scatterer InSAR (PSInSAR) 30-Mar-10 12
  13. 13. Remote Sensing with Satellite RADAR • Persistent Scatterer InSAR (PSInSAR) 30-Mar-10 13
  14. 14. PSInSAR. Past Case Studies • Deformation near the Wieliczka Salt Mine in Poland 30-Mar-10 14
  15. 15. Salt Mine in Poland • Subject and Motivations of the Study 30-Mar-10 15
  16. 16. Salt Mine in Poland • Available Data • 51 images ERS-1/2 (ESA) • 1992 to 2000 •Repeat cycle 34 days • Single orbit direction 30-Mar-10 16
  17. 17. Salt Mine in Poland • Experimental Results – PS density • Maximum=480 PS/km2 (center of Wieliczka) • Minimum=30 PS/km2 (sparse urbanization areas) • Average=92 PS/km2 – Comparison with subsidence maps Agreement • Leveling data 1970-2000 • PSInSAR data 1992-2000 – Field investigation • Interpretation of Observations 30-Mar-10 17
  18. 18. Salt Mine in Poland • Experimental Results 30-Mar-10 18
  19. 19. Salt Mine in Poland • Conclusions – Slow subsidence detected by PSInSAR – Proof of utility of SAR archive – Agreement leveling data – More PS density --> Urban areas – PS on landslide area • Variability • Horizontal displacement limitation of PSInSAR – Field inspection • Confirmation of PSInSAR observations • Hope for risk assessment 30-Mar-10 19
  20. 20. PSInSAR. Recent Case Studies • PSInSAR Analysis of damages during construction of parking near Koepoortbrug (Delft) • Filter optimization for PSInSAR analysis – Houtribdijk • Monitoring Spoorzone Delft with PSInSAR 30-Mar-10 20
  21. 21. Koepoortbrug • Subject and Motivations of the Study 30-Mar-10 21
  22. 22. Koepoortbrug • Available Data • Envisat (ESA) • 2003 to 2006 •Every 35 days • Single orbit direction 30-Mar-10 22
  23. 23. Koepoortbrug • Experimental Results • Background: Amplitude SAR • Overlaid: PS area of interest 30-Mar-10 23
  24. 24. • Conclusions Koepoortbrug – Historic data → normal behavior – Envisat data not suitable. Reasons: – Very sudden deformations – Undersampling (35 day repetition rate) – Possible change of orientation • Temporal decorrelation – Repair works • Solution – Another data set • Higher repetition rate • Shorter wavelength (improve detectability) 30-Mar-10 24
  25. 25. PSInSAR. Recent Case Studies • PSInSAR analysis of damages during construction of parking near Koepoortbrug (Delft) • Filter optimization for PSInSAR analysis – Houtribdijk • Monitoring Spoorzone Delft with PSInSAR 30-Mar-10 25
  26. 26. Houtribdijk • Subject and Motivations of the Study 30-Mar-10 26
  27. 27. Houtribdijk • Available Data • Envisat (ESA) • 2003 to 2007 •Every 35 days • Single orbit direction 30-Mar-10 27
  28. 28. Houtribdijk • Experimental Results 30-Mar-10 28
  29. 29. Houtribdijk • Conclusions – Denoise filtering smooths time series – Optimization: Triangular filter. Length 10-12 months – Similar Performance: Gaussian filter > 12 months 30-Mar-10 29
  30. 30. PSInSAR. Recent Case Studies • PSInSAR analysis of damages during construction of parking near Koepoortbrug (Delft) • Filter optimization for PSInSAR analysis – Houtribdijk • Monitoring Spoorzone Delft 30-Mar-10 30
  31. 31. Spoorzone Delft • Subject and Motivations of the Study 30-Mar-10 31
  32. 32. Spoorzone Delft • Available Data 38--- 40.5° 22.5--- 25.5° 30-Mar-10 32
  33. 33. Spoorzone Delft • Experimental Results 30-Mar-10 33
  34. 34. Spoorzone Delft • Experimental Results IKEA parking: • Soil subsidence 30-Mar-10 34
  35. 35. Spoorzone Delft • Experimental Results – Correction of Geolocation (Reference: AHN&AHN2) • Vertical offset (estimated height) 30-Mar-10 35
  36. 36. Spoorzone Delft • Experimental Results – Correction of Geolocation (Reference: AHN&AHN2) • Horizontal offset (estimated azimuth and range) 30-Mar-10 36
  37. 37. Spoorzone Delft • Experimental Results – Correction of Geolocation (Reference: AHN&AHN2) • Cross Sections 30-Mar-10 37
  38. 38. Spoorzone Delft • Experimental Results – Combination of Ascending/Descending Orbits 30-Mar-10 38
  39. 39. Spoorzone Delft • Experimental Results – Combination of Ascending/Descending Orbits ASCENDING ORBIT DESCENDING ORBIT 30-Mar-10 39
  40. 40. Spoorzone Delft • Experimental Results – Thermal Expansion Power of the technique: • Detect thermal expansion in high buildings Correlation: • PSInSAR thermal theory 30-Mar-10 40
  41. 41. Spoorzone Delft • Experimental Results – Thermal Expansion Vermeer Toren: • 7,3mm vertical deformation • (Thermal expansion) 30-Mar-10 41
  42. 42. Spoorzone Delft • Experimental Results – Detectable Deformation Side tilt Subsidence Front tilt 1 mm 1.09 mm 7.7 mm 30-Mar-10 42
  43. 43. Conclusions • Power – Historic archive (past/future) – Large coverage – Cost – Processing improvements • Interpretation of observations not straightforward • PS → physical entities? PSInSAR can provide mm accuracy in detection of deformation Monitoring Structures → Damage prevention 30-Mar-10 43

×