Web analytics with R

Alex Papageorgiou
Alex PapageorgiouMarketing analytics & data science consultant
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 1/38
Web Analytics with R
DublinR,September2015
Alexandros Papageorgiou
analyst@alex-papageo.com
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 2/38
About me
Started @ Google Ireland
Career break
Web analyst @ WhatClinic.com
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 3/38
About the talk
Intro Analytics
Live Demo
Practical Applications x 3
Discussion
·
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 4/38
Part I: Intro
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 5/38
Web analytics now and then…
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 6/38
Getting started overview
1. Get some web data for a start
2. Get the right / acurate / relevant data ***
3. Analyse the data
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 7/38
Google Analytics API + R
Why ?
Large queries ?
Freedom from the limits of the GA user interface
Automation, reproducibility, applications
Richer datasets up to 7 Dimensions and 10 Metrics
·
·
·
Handle queries of 10K - 1M records
Mitigate the effect of Query Sampling
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 8/38
The package: RGA
install("RGA") 
Author Artem Klevtsov
Access to multiple GA APIs
Shiny app to explore dimensions and metrics.
Actively developped + good documentation
·
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 9/38
Part II: Demo
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 10/38
Part III: Applications
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 11/38
Practical applications
Ecommerce website (simulated data)
Advertising campaign effectiveness (Key Ratios)
Adgroup performance (Clustering)
Key factors leading to conversion (Decision Tree)
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 12/38
Libraries
library(RGA)
library(dplyr)
library(tidyr)
library(ggplot2)
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 13/38
1. Key Performance Ratios
Commonly used in Business and finance analysis
Good for data exploration in context
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 14/38
Key Ratios: Getting the data
by_medium <‐ get_ga(profile.id = 106368203,
                    start.date = "2015‐11‐01", 
                    end.date = "2015‐08‐21", 
                           
                    metrics = "ga:transactions, ga:sessions",
                    dimensions = "ga:date, ga:medium",
                           
                    sort = NULL, 
                    filters = NULL, 
                    segment = NULL, 
                           
                    sampling.level = NULL,
                    start.index = NULL, 
                    max.results = NULL)
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 15/38
Sessions and Transactions by medium
head(by_medium)
##         date   medium transactions sessions
## 1 2014‐11‐01   (none)            0       57
## 2 2014‐11‐01   search            0       10
## 3 2014‐11‐01  display            3      422
## 4 2014‐11‐01  organic            0       30
## 5 2014‐11‐01 referral            1       40
## 6 2014‐11‐02   (none)            0       63
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 16/38
Calculating the ratios
ConversionQualityIndex =
%Transactions/Medium
%Sessions/Medium
by_medium_ratios <‐ by_medium  %>% 
    
    group_by(date) %>%  # sum sessions & transactions by date
    
    mutate(tot.sess = sum(sessions), tot.trans = sum(transactions)) %>% 
    
    mutate(pct.sessions = 100*sessions/tot.sess,   # calculate % sessions by medium
           pct.trans = 100*transactions/tot.trans, # calculate % transactions by medium
           conv.rate = 100*transactions/sessions) %>%     # conversion rate by medium
    
    mutate(ConvQualityIndex = pct.trans/pct.sessions) %>%  # conv quality index.
    
    filter(medium %in% c("search", "display", "referral"))    # the top 3 channels 
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 17/38
Ratios table
columns <‐ c(1, 2, 7:10)
head(by_medium_ratios[columns])  # display selected columns
## Source: local data frame [6 x 6]
## Groups: date
## 
##         date   medium pct.sessions pct.trans conv.rate ConvQualityIndex
## 1 2014‐11‐01   search    1.7889088   0.00000 0.0000000        0.0000000
## 2 2014‐11‐01  display   75.4919499  75.00000 0.7109005        0.9934834
## 3 2014‐11‐01 referral    7.1556351  25.00000 2.5000000        3.4937500
## 4 2014‐11‐02   search    0.5995204   0.00000 0.0000000        0.0000000
## 5 2014‐11‐02  display   79.1366906  66.66667 0.3030303        0.8424242
## 6 2014‐11‐02 referral    9.5923261  33.33333 1.2500000        3.4750000
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 18/38
Sessions % by medium
ggplot(by_medium_ratios, aes(date, pct.sessions, color = medium)) + 
    geom_point() + geom_jitter()+ geom_smooth() + ylim(0, 100)
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 19/38
Transactions % by medium
ggplot(by_medium_ratios, aes(date, pct.trans, color = medium)) + 
    geom_point() + geom_jitter() + geom_smooth()  
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 20/38
Conversion Quality Index by medium
ggplot(by_medium_ratios, aes(date, ConvQualityIndex , color = medium)) + 
    geom_point(aes(size=tot.trans)) + geom_jitter() + geom_smooth() + ylim(0,  5) +
    geom_hline(yintercept = 1, linetype="dashed", size = 1, color = "white") 
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 21/38
2. Clustering for Ad groups
Unsupervised learning
Discovers structure in data
Based on a similarity criterion
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 22/38
Ad Group Clustering: Getting the Data
profile.id = "12345678"
start.date = "2015‐01‐01"
end.date = "2015‐03‐31"
metrics = "ga:sessions, ga:transactions, 
           ga:adCost, ga:transactionRevenue, 
           ga:pageviewsPerSession"
dimensions = "ga:adGroup"
adgroup_data <‐  get_ga(profile.id = profile.id, 
                    start.date = start.date, 
                    end.date = end.date,
                    metrics = metrics, 
                    dimensions = dimensions)
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 23/38
Hierarchical Clustering
top_adgroups <‐ adgroup_data %>% 
    filter(transactions >10)  %>%    # keeping only where transactions > 10 
    filter(ad.group!="(not set)") 
n <‐  nrow(top_adgroups)
rownames(top_adgroups) <‐  paste("adG", 1:n) # short codes for adgroups
top_adgroups <‐  select(top_adgroups, ‐ad.group) # remove long adgroup names 
scaled_adgroups <‐ scale(top_adgroups)  # scale the values
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 24/38
Matrix: Scaled adgroup values.
##         sessions transactions    ad.cost transaction.revenue
## adG 1  0.3790902   2.72602456 ‐0.7040545           3.7397620
## adG 2 ‐0.6137714   0.05134068 ‐0.7111664           0.2086295
## adG 3  0.3207199   0.30473179  0.3411098           0.5346303
## adG 4  0.9956617   0.78335943  0.9139105           1.1769897
## adG 5 ‐0.2261473  ‐0.65252350 ‐0.1688845          ‐0.6691330
## adG 6 ‐0.6863092  ‐0.59621436 ‐0.5979007          ‐0.4800614
##       pageviews.per.session
## adG 1            1.93262389
## adG 2            1.05619885
## adG 3           ‐0.74163568
## adG 4           ‐0.32186999
## adG 5           ‐1.01079490
## adG 6            0.01538598
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 25/38
Dendrogram
hc <‐  hclust(dist(scaled_adgroups) ) 
plot(hc, hang = ‐1)
rect.hclust(hc, k=3, border="red")   
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 26/38
Heatmap.2
library(gplots); library(RColorBrewer)
my_palette <‐ colorRampPalette(c('white', 'yellow', 'green'))(256)
heatmap.2(scaled_adgroups, 
          cexRow = 0.7, 
          cexCol = 0.7,          
          col = my_palette,     
          rowsep = c(1, 5, 10, 14),
          lwid = c(lcm(8),lcm(8)),
          srtCol = 45,
          adjCol = c(1, 1),
          colsep = c(1, 2, 3, 4),
          sepcolor = "white", 
          sepwidth = c(0.01, 0.01),  
          scale = "none",         
          dendrogram = "row",    
          offsetRow = 0,
          offsetCol = 0,
          trace="none") 
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 27/38
Clusters based on 5 key values
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 28/38
3. Decision Trees
Handle categorical + numerical variables
Mimic human decion making process
Greedy approach
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 29/38
3. Pushing the API
profile.id = "12345678"
start.date = "2015‐03‐01"
end.date = "2015‐03‐31"
dimensions = "ga:dateHour, ga:minute, ga:sourceMedium, ga:operatingSystem, 
              ga:subContinent, ga:pageDepth, ga:daysSinceLastSession"
metrics = "ga:sessions, ga:percentNewSessions,  ga:transactions, 
           ga:transactionRevenue, ga:bounceRate, ga:avgSessionDuration,
           ga:pageviewsPerSession, ga:bounces, ga:hits"
ga_data <‐  get_ga(profile.id = profile.id, 
                    start.date = start.date, 
                    end.date = end.date,
                    metrics = metrics, 
                    dimensions = dimensions)
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 30/38
The Data
## Source: local data frame [6 x 16]
## 
##     dateHour minute       sourceMedium operatingSystem    subContinent
## 1 2015030100     00 facebook / display         Windows Southern Europe
## 2 2015030100     01 facebook / display       Macintosh Southern Europe
## 3 2015030100     01       google / cpc         Windows Northern Europe
## 4 2015030100     01       google / cpc             iOS Southern Europe
## 5 2015030100     02 facebook / display       Macintosh Southern Europe
## 6 2015030100     02 facebook / display         Windows  Western Europe
## Variables not shown: pageDepth (chr), daysSinceLastSession (chr), sessions
##   (dbl), percentNewSessions (dbl), transactions (dbl), transactionRevenue
##   (dbl), bounceRate (dbl), avgSessionDuration (dbl), pageviewsPerSession
##   (dbl), hits (dbl), Visitor (chr)
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 31/38
Imbalanced class
Approach: Page depth>5 set as proxy to conversion
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 32/38
Data preparation
Session data made "almost" granular
Removed invalid sessions
Extra dimension added (user type)
Removed highly correlated vars
Data split into train and test
Day of the week extracted from date
Days since last session placed in buckets
Date converted to weekday or weekend
Datehour split in two component variables
Georgraphy split between top sub-continents and Other
Hour converted to AM or PM
·
·
·
·
·
·
·
·
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 33/38
Decision Tree with rpart
library(rpart)
fit <‐ rpart(pageDepth ~., data = Train,       # pageDepth is a binary variable
                            method = 'class',  
                            control=rpart.control(minsplit = 10, cp = 0.001, xval = 10)) 
# printcp(fit)
fit <‐ prune(fit, cp = 1.7083e‐03)   # prune the tree based on chosen param value
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 34/38
The Tree
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 35/38
VarImp
…Possible Actions ?
dotchart(fit$variable.importance)
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 36/38
Takeaways
Web analytics not just for marketers!
But neither a magic bullet… (misses the wealth of atomic level data)
Solutions ?
What's coming next ?
·
·
·
·
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 37/38
Thank you!
9/21/2015 Web Analytics with R
file:///D:/Projects/R_project_temp/RGA/SimGAR.html 38/38
1 of 38

Recommended

Gerrit Analytics applied to Android source code by
Gerrit Analytics applied to Android source codeGerrit Analytics applied to Android source code
Gerrit Analytics applied to Android source codeLuca Milanesio
242 views26 slides
What's new in Gerrit Code Review v3.1 and beyond by
What's new in Gerrit Code Review v3.1 and beyondWhat's new in Gerrit Code Review v3.1 and beyond
What's new in Gerrit Code Review v3.1 and beyondLuca Milanesio
231 views18 slides
Gerrit Code Review migrations step-by-step by
Gerrit Code Review migrations step-by-stepGerrit Code Review migrations step-by-step
Gerrit Code Review migrations step-by-stepLuca Milanesio
312 views39 slides
Performance Monitoring with Google Lighthouse by
Performance Monitoring with Google LighthousePerformance Monitoring with Google Lighthouse
Performance Monitoring with Google LighthouseDrupalCamp Kyiv
561 views31 slides
和艦長一起玩轉 GitLab & GitLab Workflow by
和艦長一起玩轉 GitLab & GitLab Workflow和艦長一起玩轉 GitLab & GitLab Workflow
和艦長一起玩轉 GitLab & GitLab WorkflowChen Cheng-Wei
5.9K views79 slides
Web.dev extended : What's new in Web [GDG Taichung] by
Web.dev extended : What's new in Web [GDG Taichung]Web.dev extended : What's new in Web [GDG Taichung]
Web.dev extended : What's new in Web [GDG Taichung]Chieh Kai Yang
347 views59 slides

More Related Content

Similar to Web analytics with R

A/B Testing Ultimate Guideline. How to design and analyze digital testing. by
A/B Testing Ultimate Guideline. How to design and analyze digital testing.A/B Testing Ultimate Guideline. How to design and analyze digital testing.
A/B Testing Ultimate Guideline. How to design and analyze digital testing.Ricardo Tayar López
978 views64 slides
Suivi de l’avancement d’un projet Agile/Scrum by
Suivi de l’avancement d’un projet Agile/ScrumSuivi de l’avancement d’un projet Agile/Scrum
Suivi de l’avancement d’un projet Agile/Scrumserge sonfack
128 views20 slides
Fullstack Microservices by
Fullstack MicroservicesFullstack Microservices
Fullstack MicroservicesWilliam Bartlett
228 views55 slides
Rina sim workshop by
Rina sim workshopRina sim workshop
Rina sim workshopICT PRISTINE
1.5K views17 slides
The Joys of Clean Data with Matt Dowle by
The Joys of Clean Data with  Matt DowleThe Joys of Clean Data with  Matt Dowle
The Joys of Clean Data with Matt DowleSri Ambati
3.3K views22 slides
TechEvent DWH Modernization by
TechEvent DWH ModernizationTechEvent DWH Modernization
TechEvent DWH ModernizationTrivadis
77 views28 slides

Similar to Web analytics with R(20)

A/B Testing Ultimate Guideline. How to design and analyze digital testing. by Ricardo Tayar López
A/B Testing Ultimate Guideline. How to design and analyze digital testing.A/B Testing Ultimate Guideline. How to design and analyze digital testing.
A/B Testing Ultimate Guideline. How to design and analyze digital testing.
Suivi de l’avancement d’un projet Agile/Scrum by serge sonfack
Suivi de l’avancement d’un projet Agile/ScrumSuivi de l’avancement d’un projet Agile/Scrum
Suivi de l’avancement d’un projet Agile/Scrum
serge sonfack128 views
Rina sim workshop by ICT PRISTINE
Rina sim workshopRina sim workshop
Rina sim workshop
ICT PRISTINE1.5K views
The Joys of Clean Data with Matt Dowle by Sri Ambati
The Joys of Clean Data with  Matt DowleThe Joys of Clean Data with  Matt Dowle
The Joys of Clean Data with Matt Dowle
Sri Ambati3.3K views
TechEvent DWH Modernization by Trivadis
TechEvent DWH ModernizationTechEvent DWH Modernization
TechEvent DWH Modernization
Trivadis77 views
Google Analytics Data Mining with R by Tatvic Analytics
Google Analytics Data Mining with RGoogle Analytics Data Mining with R
Google Analytics Data Mining with R
Tatvic Analytics7.6K views
Go - Where it's going and why you should pay attention. by Aaron Schlesinger
Go - Where it's going and why you should pay attention.Go - Where it's going and why you should pay attention.
Go - Where it's going and why you should pay attention.
Aaron Schlesinger719 views
Lazy Load '22 - Performance Mistakes - An HTTP Archive Deep Dive by Paul Calvano
Lazy Load  '22 - Performance Mistakes - An HTTP Archive Deep DiveLazy Load  '22 - Performance Mistakes - An HTTP Archive Deep Dive
Lazy Load '22 - Performance Mistakes - An HTTP Archive Deep Dive
Paul Calvano1.3K views
SpiraPlan - Top Productivity Boosting Features by Inflectra
SpiraPlan - Top Productivity Boosting FeaturesSpiraPlan - Top Productivity Boosting Features
SpiraPlan - Top Productivity Boosting Features
Inflectra277 views
ASP.NET MVC - Public, Private Clouds and ICN.Bg by Dimitar Danailov
ASP.NET MVC - Public, Private Clouds and ICN.BgASP.NET MVC - Public, Private Clouds and ICN.Bg
ASP.NET MVC - Public, Private Clouds and ICN.Bg
Dimitar Danailov473 views
Ryan Jarvinen Open Shift Talk @ Postgres Open 2013 by PostgresOpen
Ryan Jarvinen Open Shift Talk @ Postgres Open 2013Ryan Jarvinen Open Shift Talk @ Postgres Open 2013
Ryan Jarvinen Open Shift Talk @ Postgres Open 2013
PostgresOpen2.2K views
GitLab: One Tool for Software Development (2018-02-06 @ SEIUM, Braga, Portugal) by Pedro Moreira da Silva
GitLab: One Tool for Software Development (2018-02-06 @ SEIUM, Braga, Portugal)GitLab: One Tool for Software Development (2018-02-06 @ SEIUM, Braga, Portugal)
GitLab: One Tool for Software Development (2018-02-06 @ SEIUM, Braga, Portugal)
Re-architecting on the Fly #OReillySACon by Raffi Krikorian
Re-architecting on the Fly #OReillySACon Re-architecting on the Fly #OReillySACon
Re-architecting on the Fly #OReillySACon
Raffi Krikorian6.7K views

More from Alex Papageorgiou

Webinar Advanced marketing analytics by
Webinar Advanced marketing analyticsWebinar Advanced marketing analytics
Webinar Advanced marketing analyticsAlex Papageorgiou
202 views33 slides
Kaggle for digital analysts by
Kaggle for digital analystsKaggle for digital analysts
Kaggle for digital analystsAlex Papageorgiou
165 views18 slides
Kaggle for Analysts - MeasureCamp London 2019 by
Kaggle for Analysts - MeasureCamp London 2019Kaggle for Analysts - MeasureCamp London 2019
Kaggle for Analysts - MeasureCamp London 2019Alex Papageorgiou
139 views18 slides
Travel information search: the presence of social media by
Travel information search: the presence of social mediaTravel information search: the presence of social media
Travel information search: the presence of social mediaAlex Papageorgiou
384 views10 slides
The Kaggle Experience from a Digital Analysts' Perspective by
The Kaggle Experience from a Digital Analysts' PerspectiveThe Kaggle Experience from a Digital Analysts' Perspective
The Kaggle Experience from a Digital Analysts' PerspectiveAlex Papageorgiou
1.3K views24 slides
Clickstream analytics with Markov Chains by
Clickstream analytics with Markov ChainsClickstream analytics with Markov Chains
Clickstream analytics with Markov ChainsAlex Papageorgiou
2.5K views18 slides

More from Alex Papageorgiou(15)

Kaggle for Analysts - MeasureCamp London 2019 by Alex Papageorgiou
Kaggle for Analysts - MeasureCamp London 2019Kaggle for Analysts - MeasureCamp London 2019
Kaggle for Analysts - MeasureCamp London 2019
Alex Papageorgiou139 views
Travel information search: the presence of social media by Alex Papageorgiou
Travel information search: the presence of social mediaTravel information search: the presence of social media
Travel information search: the presence of social media
Alex Papageorgiou384 views
The Kaggle Experience from a Digital Analysts' Perspective by Alex Papageorgiou
The Kaggle Experience from a Digital Analysts' PerspectiveThe Kaggle Experience from a Digital Analysts' Perspective
The Kaggle Experience from a Digital Analysts' Perspective
Alex Papageorgiou1.3K views
Clickstream analytics with Markov Chains by Alex Papageorgiou
Clickstream analytics with Markov ChainsClickstream analytics with Markov Chains
Clickstream analytics with Markov Chains
Alex Papageorgiou2.5K views
Growth Analytics: Evolution, Community and Tools by Alex Papageorgiou
Growth Analytics: Evolution, Community and ToolsGrowth Analytics: Evolution, Community and Tools
Growth Analytics: Evolution, Community and Tools
Alex Papageorgiou1.3K views
Clickstream Analytics with Markov Chains by Alex Papageorgiou
Clickstream Analytics with Markov Chains Clickstream Analytics with Markov Chains
Clickstream Analytics with Markov Chains
Alex Papageorgiou2.3K views
The impact of search ads on organic search traffic by Alex Papageorgiou
The impact of search ads on organic search trafficThe impact of search ads on organic search traffic
The impact of search ads on organic search traffic
Alex Papageorgiou159 views
Prediciting happiness from mobile app survey data by Alex Papageorgiou
Prediciting happiness from mobile app survey dataPrediciting happiness from mobile app survey data
Prediciting happiness from mobile app survey data
Alex Papageorgiou251 views
E com conversion prediction and optimisation by Alex Papageorgiou
E com conversion prediction and optimisationE com conversion prediction and optimisation
E com conversion prediction and optimisation
Alex Papageorgiou382 views
Data science with Google Analytics @MeasureCamp by Alex Papageorgiou
Data science with Google Analytics @MeasureCampData science with Google Analytics @MeasureCamp
Data science with Google Analytics @MeasureCamp

Recently uploaded

Penetration testing by Burpsuite by
Penetration testing by  BurpsuitePenetration testing by  Burpsuite
Penetration testing by BurpsuiteAyonDebnathCertified
5 views19 slides
Amy slides.pdf by
Amy slides.pdfAmy slides.pdf
Amy slides.pdfStatsCommunications
5 views13 slides
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation by
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented GenerationDataScienceConferenc1
19 views29 slides
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f... by
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...DataScienceConferenc1
5 views18 slides
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx by
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptxDataScienceConferenc1
11 views16 slides
Data about the sector workshop by
Data about the sector workshopData about the sector workshop
Data about the sector workshopinfo828217
29 views27 slides

Recently uploaded(20)

[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation by DataScienceConferenc1
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Spela Poklukar & Tea Brasanac - Retrieval Augmented Generation
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f... by DataScienceConferenc1
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...
[DSC Europe 23] Matteo Molteni - Implementing a Robust CI Workflow with dbt f...
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx by DataScienceConferenc1
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
[DSC Europe 23] Stefan Mrsic_Goran Savic - Evolving Technology Excellence.pptx
Data about the sector workshop by info828217
Data about the sector workshopData about the sector workshop
Data about the sector workshop
info82821729 views
CRIJ4385_Death Penalty_F23.pptx by yvettemm100
CRIJ4385_Death Penalty_F23.pptxCRIJ4385_Death Penalty_F23.pptx
CRIJ4385_Death Penalty_F23.pptx
yvettemm1007 views
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P... by DataScienceConferenc1
[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...[DSC Europe 23][AI:CSI]  Dragan Pleskonjic - AI Impact on Cybersecurity and P...
[DSC Europe 23][AI:CSI] Dragan Pleskonjic - AI Impact on Cybersecurity and P...
Shreyas hospital statistics.pdf by samithavinal
Shreyas hospital statistics.pdfShreyas hospital statistics.pdf
Shreyas hospital statistics.pdf
samithavinal5 views
Product Research sample.pdf by AllenSingson
Product Research sample.pdfProduct Research sample.pdf
Product Research sample.pdf
AllenSingson33 views
LIVE OAK MEMORIAL PARK.pptx by ms2332always
LIVE OAK MEMORIAL PARK.pptxLIVE OAK MEMORIAL PARK.pptx
LIVE OAK MEMORIAL PARK.pptx
ms2332always7 views
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init... by DataScienceConferenc1
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
[DSC Europe 23][Cryptica] Martin_Summer_Digital_central_bank_money_Ideas_init...
CRM stick or twist workshop by info828217
CRM stick or twist workshopCRM stick or twist workshop
CRM stick or twist workshop
info82821714 views
DGST Methodology Presentation.pdf by maddierlegum
DGST Methodology Presentation.pdfDGST Methodology Presentation.pdf
DGST Methodology Presentation.pdf
maddierlegum7 views
K-Drama Recommendation Using Python by FridaPutriassa
K-Drama Recommendation Using PythonK-Drama Recommendation Using Python
K-Drama Recommendation Using Python
FridaPutriassa5 views
4_4_WP_4_06_ND_Model.pptx by d6fmc6kwd4
4_4_WP_4_06_ND_Model.pptx4_4_WP_4_06_ND_Model.pptx
4_4_WP_4_06_ND_Model.pptx
d6fmc6kwd47 views
Listed Instruments Survey 2022.pptx by secretariat4
Listed Instruments Survey  2022.pptxListed Instruments Survey  2022.pptx
Listed Instruments Survey 2022.pptx
secretariat493 views

Web analytics with R