Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
(VARIATION ON A THEME)
<<Powered by MindHD for MacOSX>>
-
EX 27.1.1sierpinski      draw-triangle, too-small?
27.2         /1. empty2. (cons s f) : s   f
,              .NL : NewLine symbol
27.3
TOLERANCE
EX 27.3.1
27.4http://en.wikipedia.org/wiki/Newtons_method
27.5
28
28.1
EX 28.1.2
28.2
29         .             ,     .
29.1                 ,       (Abstract Running Time)                .
K        ,K=2       N.
SORT -> N^2              N/2 -> N              insert              N -> N*N              N*N + N ->              N*N
MAX -> 2^N
29.2       F      - 1000G       -1
-               ???        c                  bigEnough     bigEnough<=n                 f O(g)   .f(n) <= c*g(n)f(N) = 10...
max -> O(2^N)max2 -> O(N)                                                       .                   , n->10 : max -> 2^10,...
29.3      -         .(     , hashtable)(build-vector N f) = (vector (f 0) ... (f (-N 1)))(vector-ref (vector V-0 ...V-n) i...
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Htdp27.key
Upcoming SlideShare
Loading in …5
×

Htdp27.key

523 views

Published on

Published in: Technology, Art & Photos
  • Be the first to comment

  • Be the first to like this

Htdp27.key

  1. 1. (VARIATION ON A THEME)
  2. 2. <<Powered by MindHD for MacOSX>>
  3. 3. -
  4. 4. EX 27.1.1sierpinski draw-triangle, too-small?
  5. 5. 27.2 /1. empty2. (cons s f) : s f
  6. 6. , .NL : NewLine symbol
  7. 7. 27.3
  8. 8. TOLERANCE
  9. 9. EX 27.3.1
  10. 10. 27.4http://en.wikipedia.org/wiki/Newtons_method
  11. 11. 27.5
  12. 12. 28
  13. 13. 28.1
  14. 14. EX 28.1.2
  15. 15. 28.2
  16. 16. 29 . , .
  17. 17. 29.1 , (Abstract Running Time) .
  18. 18. K ,K=2 N.
  19. 19. SORT -> N^2 N/2 -> N insert N -> N*N N*N + N -> N*N
  20. 20. MAX -> 2^N
  21. 21. 29.2 F - 1000G -1
  22. 22. - ??? c bigEnough bigEnough<=n f O(g) .f(n) <= c*g(n)f(N) = 1000*N, g(N)=N*N1000<=n bigEnough = 1000, c = 1f(n) <= 1 * g(n)f O(g)
  23. 23. max -> O(2^N)max2 -> O(N) . , n->10 : max -> 2^10, max2 ->10 max2 2 , n->10 : max->2^10, max2->20 max2 2 , n->100 : max->2^100, max2->200
  24. 24. 29.3 - .( , hashtable)(build-vector N f) = (vector (f 0) ... (f (-N 1)))(vector-ref (vector V-0 ...V-n) i) = V-i(vector-length (vector V-0 ..V-n)) = (+ n 1)(vector? (vector V-0 ...V-n)) = true

×