Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Sucesión de fibonacci

0 views

Published on

Published in: Technology
  • Be the first to comment

Sucesión de fibonacci

  1. 1. Sucesión de Fibonacci 1 Sucesión de Fibonacci En matemáticas, la sucesión de Fibonacci (a veces mal llamada serie de Fibonacci) es la siguiente sucesión infinita de números naturales: La sucesión comienza con los números 0 y 1, y a partir de estos, «cada término es la suma de los dos anteriores», es la relación de recurrencia que la define. A los elementos de esta sucesión se les llama números de Fibonacci. Esta sucesión fue descrita en Europa por Leonardo de Pisa, matemático italiano del siglo XIII también conocido como Fibonacci. Tiene numerosas aplicaciones en ciencias de la computación, matemáticas y teoría de juegos. También aparece en configuraciones biológicas, como por ejemplo en las ramas de los árboles, en la disposición de las hojas en el tallo, en la flora de la alcachofa y en el arreglo de un cono. Gráfica de la sucesión de Fibonacci hasta Historia La sucesión fue descrita por Fibonacci como la solución a un problema de la cría de conejos: "Cierto hombre tenía una pareja de conejos juntos en un lugar cerrado y uno desea saber cuántos son creados a partir de este par en un año cuando es su naturaleza parir otro par en un simple mes, y en el segundo mes los nacidos parir también".[1] Número de Mes Explicación de la genealogía Parejas de conejos totales Comienzo del mes 1 Nace una pareja de conejos (pareja A). 1 pareja en total. Fin del mes 1 La pareja A tiene un mes de edad. Se cruza la pareja A. 1+0=1 pareja en total. Fin del mes 2 La pareja A da a luz a la pareja B. Se vuelve a cruzar la pareja A. 1+1=2 parejas en total. Fin del mes 3 La pareja A da a luz a la pareja C. La pareja B cumple 1 mes. Se cruzan las parejas A y B. 2+1=3 parejas en total. Fin del mes 4 Las parejas A y B dan a luz a D y E. La pareja C cumple 1 mes. Se cruzan las parejas A, B y C. 3+2=5 parejas en total. Fin del mes 5 A, B y C dan a luz a F, G y H. D y E cumplen un mes. Se cruzan A, B, C, D y E. 5+3=8 parejas en total. Fin del mes 6 A, B, C, D y E dan a luz a I, J, K, L y M. F, G y H cumplen un mes. Se cruzan A, B, C, D, E, F, G 8+5=13 parejas en total. y H. ... ... ... ... ... Nota: al contar la cantidad de letras distintas en cada mes, se puede saber la cantidad de parejas totales que hay hasta ese mes.
  2. 2. Sucesión de Fibonacci 2 De esta manera Fibonacci presentó la sucesión en su libro Liber Abaci, publicado en 1202. Muchas propiedades de la sucesión de Fibonacci fueron descubiertas por Édouard Lucas, responsable de haberla denominado como se la conoce en la actualidad.[2] También Kepler describió los números de Fibonacci, y el matemático escocés Robert Simson descubrió en 1753 que la relación entre dos números de Fibonacci sucesivos se acerca a la relación áurea fi ( ) cuanto más se acerque a infinito; es más: el cociente de dos términos sucesivos de toda sucesión recurrente de orden dos tiende al mismo límite. Esta sucesión ha tenido popularidad en el siglo XX especialmente en el ámbito musical, en el que compositores con tanto renombre como Béla Bartók, Olivier Messiaen, la banda Tool y Delia Derbyshire la han utilizado para la creación de acordes y de nuevas estructuras de frases musicales. Definición recursiva Los números de Fibonacci quedan definidos por la ecuación: (3) partiendo de dos primeros valores predeterminados: se obtienen los siguientes números: • • • • • • para Esta manera de definir, de hecho considerada algorítmica, es usual en Matemática discreta. Chimenea con la sucesión de Fibonacci Representaciones alternativas Para analizar la sucesión de Fibonacci (y, en general, cualquier sucesión) es conveniente obtener otras maneras de representarla matemáticamente. Función generadora Una función generadora para una sucesión cualquiera es la función , es decir, una serie formal de potencias donde cada coeficiente es un elemento de la sucesión. Los números de Fibonacci tienen la función generadora (4) Cuando esta función se expande en potencias de , los coeficientes resultan ser la sucesión de Fibonacci:
  3. 3. Sucesión de Fibonacci 3 Fórmula explícita La definición de la sucesión de Fibonacci es recurrente; es decir que se necesitan calcular varios términos anteriores para poder calcular un término específico. Se puede obtener una fórmula explícita de la sucesión de Fibonacci (que no requiere calcular términos anteriores) notando que las ecuaciones (1), (2) y (3) definen la relación de recurrencia con las condiciones iniciales y El polinomio característico de esta relación de recurrencia es , y sus raíces son De esta manera, la fórmula explícita de la sucesión de Fibonacci tendrá la forma Si se toman en cuenta las condiciones iniciales, entonces las constantes cuando y y satisfacen la ecuación anterior , es decir que satisfacen el sistema de ecuaciones Al resolver este sistema de ecuaciones se obtiene Por lo tanto, cada número de la sucesión de Fibonacci puede ser expresado como (5) Para simplificar aún más es necesario considerar el número áureo de manera que la ecuación (5) se reduce a (6) Esta fórmula se le atribuye a Édouard Lucas, y es fácilmente demostrable por inducción matemática. A pesar de que la sucesión de Fibonacci consta únicamente de números naturales, su fórmula explícita incluye al número irracional . De hecho, la relación con este número es estrecha.
  4. 4. Sucesión de Fibonacci 4 Forma matricial Otra manera de obtener la sucesión de Fibonacci es considerando el sistema lineal de ecuaciones Este sistema se puede representar mediante su notación matricial como Conociendo a y , al aplicar la fórmula anterior veces se obtiene (7) Una vez aquí, simplemente tenemos que diagonalizar la matriz, facilitando así la operación de potenciación, y obteniendo por tanto la fórmula explícita para la sucesión que se especificó arriba. y más aún (8) Estas igualdades pueden probarse mediante inducción matemática. Propiedades de la sucesión Los números de Fibonacci aparecen en numerosas aplicaciones de diferentes áreas. Por ejemplo, en modelos de la crianza de conejos o de plantas, al contar el número de cadenas de bits de longitud que no tienen ceros consecutivos y en una vasta cantidad de contextos diferentes. De hecho, existe una publicación especializada llamada Fibonacci Quarterly[3] dedicada al estudio de la sucesión de Fibonacci y temas afines. Se trata de un tributo a cuán ampliamente los números de Fibonacci aparecen en matemáticas y sus aplicaciones en otras áreas. Algunas de las propiedades de esta sucesión son las siguientes: • La razón o cociente entre un término y el inmediatamente anterior varía continuamente, pero se estabiliza en el número áureo. Es decir: Al construir bloques cuya longitud de lado sean números de Fibonacci se obtiene un dibujo que asemeja al rectángulo áureo (véase Número áureo). Este límite no es privativo de la Sucesión de Fibonacci. Cualquier sucesión recurrente de orden 2, como la sucesión 3, 4, 7, 11, 18,..., lleva al mismo límite. Esto fue demostrado por Barr y Schooling en una carta publicada en la revista londinense "The Field" del 14 de diciembre de 1912. Los cocientes son oscilantes; es decir, que un cociente es menor al límite y el siguiente es mayor. Los cocientes pueden ordenarse en dos sucesiones que se aproximan asintóticamente por exceso y por defecto al valor límite. • Cualquier número natural se puede escribir mediante la suma de un número limitado de términos de la sucesión de Fibonacci, cada uno de ellos distinto a los demás. Por ejemplo, , . • Tan sólo un término de cada tres es par, uno de cada cuatro es múltiplo de 3, uno de cada cinco es múltiplo de 5, etc. Esto se puede generalizar, de forma que la sucesión de Fibonacci es periódica en las congruencias módulo , para cualquier . • La sucesión puede expresarse mediante otra fórmula explícita llamada forma de Binet (de Jacques Binet). Si y , entonces
  5. 5. Sucesión de Fibonacci 5 y • Cada número de Fibonacci es el promedio del término que se encuentra dos posiciones antes y el término que se encuentra una posición después. Es decir • Lo anterior también puede expresarse así: calcular el siguiente número a uno dado es 2 veces éste número menos el número 2 posiciones más atrás. • La suma de los primeros números es igual al número que ocupa la posición menos uno. Es decir • Otras identidades interesantes incluyen las siguientes: Si , entonces para cualquier (Identidad de Cassini) (con φ = número áureo) o, despejando f(n+1) y aplicando 1/φ = φ-1: • El máximo común divisor de dos números de Fibonacci es otro número de Fibonacci. Más específicamente Esto significa que y son primos relativos y que divide exactamente a • Los números de Fibonacci aparecen al sumar las diagonales del triángulo de Pascal. Es decir que para cualquier , Phi forma parte de una expresión de la sucesión de Fibonacci. y más aún
  6. 6. Sucesión de Fibonacci • Si , tal que 6 es un número primo, entonces también es un número primo, con una única excepción, ; 3 es un número primo, pero 4 no lo es. • La suma infinita de los términos de la sucesión es exactamente . • La suma de diez números Fibonacci consecutivos es siempre 11 veces superior al séptimo número de la serie. • El último dígito de cada número se repite periódicamente cada 60 números. Los dos últimos, cada 300; a partir de ahí, se repiten cada números. Generalización El concepto fundamental de la sucesión de Fibonacci es que cada elemento es la suma de los dos anteriores. En este sentido la sucesión puede expandirse al conjunto de los números enteros como de manera que la suma de cualesquiera dos números consecutivos es el inmediato siguiente. Para poder definir los índices negativos de la sucesión, se despeja de la ecuación (3) de donde se obtiene De esta manera, si es impar y si es par. La sucesión se puede expandir al campo de los números reales tomando la parte real de la fórmula explícita (ecuación (6)) cuando es cualquier número real. La función resultante Gráfica de la sucesión de Fibonacci extendida al campo de los números reales. tiene las mismas características que la sucesión de Fibonacci: • • • para cualquier número real Una sucesión de Fibonacci generalizada es una sucesión (9) donde para Es decir, cada elemento de una sucesión de Fibonacci generalizada es la suma de los dos anteriores, pero no necesariamente comienza en 0 y 1. Una sucesión de fibonacci generalizada muy importante, es la formada por las potencias del número áureo. . La importancia de esta sucesión reside en el hecho de que se puede expandir directamente al conjunto de los números reales. . ...y al de los complejos. . Una característica notable es que, si Por ejemplo, la ecuación (7) puede generalizarse a es una sucesión de Fibonacci generalizada, entonces
  7. 7. Sucesión de Fibonacci 7 Esto significa que cualquier cálculo sobre una sucesión de Fibonacci generalizada se puede efectuar usando números de Fibonacci. Sucesión de Lucas Un ejemplo de sucesión de Fibonacci generalizada es la sucesión de Lucas, descrita por las ecuaciones • • • para La sucesión de Lucas tiene una gran similitud con la sucesión de Fibonacci y comparte muchas de sus características. Algunas propiedades interesantes incluyen: • La proporción entre un número de Lucas y su sucesor inmediato se aproxima al número áureo. Es decir Gráfica de la sucesión de Lucas extendida al campo de los números reales. • La fórmula explícita para la sucesión de Lucas es • La suma de los primeros números de Lucas es el número que se encuentra en la posición menos uno. Es decir • Cualquier fórmula que contenga un número de Lucas puede expresarse en términos de números de Fibonacci mediante la igualdad • Cualquier fórmula que contenga un número de Fibonacci puede expresarse en términos de números de Lucas mediante la igualdad Algoritmos de cálculo Para calcular el -ésimo elemento de la sucesión de Fibonacci existen varios algoritmos (métodos). La definición misma puede emplearse como uno, aquí expresado en pseudocódigo: Cálculo de Algoritmo 1 Versión recursiva (Complejidad ) usando el algoritmo 1.
  8. 8. Sucesión de Fibonacci 8 función si entonces devuelve en otro caso devuelve Usando técnicas de análisis de algoritmos es posible demostrar que, a pesar de su simplicidad, el algoritmo 1 requiere efectuar sumas para poder encontrar el resultado. Dado que la sucesión crece tan rápido como , entonces el algoritmo está en el orden de . Es decir, que este algoritmo es muy lento. Por ejemplo, para calcular este algoritmo requiere efectuar 20.365.011.073 sumas. Para evitar hacer tantas cuentas, es común recurrir a una calculadora y utilizar la ecuación (6), sin embargo, dado que es un número irracional, la única manera de utilizar esta fórmula es utilizando una aproximación de y obteniendo en consecuencia un resultado aproximado pero incorrecto. Por ejemplo, si se usa una calculadora de 10 dígitos, entonces la fórmula anterior arroja como resultado aún cuando el resultado correcto es . Este error se hace cada vez más grande conforme crece . Un método más práctico evitaría calcular las mismas sumas más de una vez. Considerando un par consecutivos de la sucesión de Fibonacci, el siguiente par de la sucesión es de números , de esta manera se divisa un algoritmo donde sólo se requiere considerar dos números consecutivos de la sucesión de Fibonacci en cada paso. Este método es el que usaríamos normalmente para hacer el cálculo a lápiz y papel. El algoritmo se expresa en pseudocódigo como: Algoritmo 2 Versión iterativa (Complejidad ) función para desde hasta hacer devuelve Esta versión requiere efectuar sólo sumas para calcular , lo cual significa que este método es considerablemente más rápido que el algoritmo 1. Por ejemplo, el algoritmo 2 sólo se requiere efectuar 50 sumas para calcular .
  9. 9. Sucesión de Fibonacci 9 Un algoritmo todavía más rápido se sigue partiendo de la ecuación (8). Utilizando leyes de exponentes es posible calcular como Calculando usando el algoritmo 3. De esta manera se divisa el algoritmo de tipo Divide y Vencerás donde sólo se requeriría hacer, aproximadamente, multiplicaciones matriciales. Sin embargo, no es necesario almacenar los cuatro valores de cada matriz dado que cada una tiene la forma De esta manera, cada matriz queda completamente representada por los valores y calcular como Por lo tanto el algoritmo queda como sigue: Algoritmo 3 Versión Divide y Vencerás (Complejidad ) , y su cuadrado se puede
  10. 10. Sucesión de Fibonacci 10 función si entonces devuelve mientras si hacer es impar entonces devuelve A pesar de lo engorroso que parezca, este algoritmo permite reducir enormemente el número de operaciones que se necesitan para calcular números de Fibonacci muy grandes. Por ejemplo, para calcular , en vez de hacer las 573.147.844.013.817.084.100 sumas del algoritmo 1 o las 100 sumas con el algoritmo 2, el cálculo se reduce a tan sólo 9 multiplicaciones matriciales. La sucesión de Fibonacci en la naturaleza Los machos de una colmena de abejas tienen un árbol genealógico que cumple con esta sucesión. El hecho es que un zángano (1), el macho de la abeja, no tiene padre, pero sí que tiene una madre (1, 1), dos abuelos, que son los padres de la reina (1, 1, 2), tres bisabuelos, ya que el padre de la reina no tiene padre (1, 1, 2, 3), cinco tatarabuelos (1, 1, 2, 3, 5), ocho trastatarabuelos (1, 1, 2, 3, 5, 8) y así sucesivamente, cumpliendo con la sucesión de Fibonacci. Dígitos en la sucesión de Fibonacci Una de las curiosidades de dicha serie son los dígitos de sus elementos: • Empezando en 1 dígito y "terminando" en infinitos, cada valor de dígito es compartido por 4, 5 o 6 números de la serie. Siendo 6 solo en el caso de 1 dígito. Fibonaccis Traum, Martina Schettina 2008, 40 x 40 cm • En los elementos de posición n, n10, n100,..., el número de dígitos aumenta en el mismo orden. Dando múltiples distintos para cada n.
  11. 11. Sucesión de Fibonacci Referencias [1] Laurence Sigler, Fibonacci's Liber Abaci, página 404 [2] Handbook of discrete and combinatorial mathematics, sección 3.1.2 [3] Fibonacci Quarterly (http:/ / www. fq. math. ca/ ) Bibliografía • • • • • Kolman, Bernard; Hill, David R. (2006). Álgebra Lineal. México: PEARSON EDUCACIÓN. ISBN 970-26-0696-9. Johnsonbaugh, Richard (2005). Matemáticas Discretas. México: PEARSON EDUCACIÓN. ISBN 970-26-0637-3. Brassard, G; Bratley, P. (1997). Fundamentos de Algoritmia. Madrid: PRETINCE HALL. ISBN 84-89660-00-X. Kenneth, H. Rosen (2003). Discrete mathematics and its applications. McGraw Hill. ISBN 0-07-123374-1. Kenneth H. Rosen; John G. Michaels (1999). Handbook of discrete and combinatorial mathematics. CRC. ISBN 0-8493-0149-1. • N. N. Vorobiov (1974). Números de Fibonacci. Editorial Mir, Moscú, Colección Lecciones Populares de Matemáticas. Traducción al español de Carlos Vega, catedrático de Matemáticas Superiores y candidato a doctor en ciencias físico-matemáticas. • A. I. Markushevich (1974; 1981). Sucesiones recurrentes. Editorial Mir, Moscú, Colección Lecciones Populares de Matemáticas. Traducción al español de Carlos Vega. • Luca Pacioli (1946). La Divina Proporción. Editorial Losada, Buenos Aires. Enlaces externos • Wikimedia Commons alberga contenido multimedia sobre números de Fibonacci. Commons • Fibonacci's Liber Abaci (http://books.google.co.ve/books?id=PilhoGJeKBUC&printsec=frontcover& hl=es#v=onepage&q&f=false) vista previa en Google Books (en inglés) • Sucesión de Fibonacci en Mathworld (http://mathworld.wolfram.com/FibonacciNumber.html) Wolfram en MathWorld (en inglés) • The Fibonacci Sequence (http://www.youtube.com/watch?v=P0tLbl5LrJ8) En inglés. 11
  12. 12. Fuentes y contribuyentes del artículo Fuentes y contribuyentes del artículo Sucesión de Fibonacci  Fuente: http://es.wikipedia.org/w/index.php?oldid=72522226  Contribuyentes: .José, 142857, Acratta, Agmalnero, Airunp, Alexlm78, Angel GN, Antón Francho, Arroy, ArtEze, Açipni-Lovrij, Balles2601, Banfield, Camilo, Camima, Camr, Carlos Alberto Carcagno, CentroBabbage, Cheveri, Ciberwing, Clafi, Cratón, Crescent Moon, Cusell, Dagavi, Daster, David0811, Davius, Dbarreiro, Diegusjaimes, Dnu72, Donnacho, Edc.Edc, Edmenb, Edslov, Egaida, Emijrp, Ensada, Ep3p, Eridannus, Escarlati, Espilas, Evaristor, Fishbone16, Fixertool, Frei sein, Gaijin, Galandil, Gonzaloend, Goofys, HUB, HarryLine, HiTe, House, Humbefa, Ingenioso Hidalgo, Ivanmatulovich95, J. A. Gélvez, JMCC1, JacobRodrigues, Jamrb, Jarisleif, Javierito92, Jecanre, Jkbw, Joacorock, Joarsolo, Johnwilman, Jorge 2701, Joseaperez, Josepbobet, JuaN-ThE-HaCKeR, Juan Domingo Periñón, Juan Mayordomo, Juancgall, Juancitox, Kadellar, Keyogre, Kn, Korgzak, Krystina, Leonel mac, Leonpolanco, Leugim1972, Lfgg2608, MadriCR, Maestro de matemáticas, Magister Mathematicae, Maldoror, Matdrodes, Mel 23, Metronomo, Monra, Montgomery, Morytelov, Muro de Aguas, Mutewitness, Nachoben, Neodop, NicolasAlejandro, Niqueco, Nolaiz, Obelix83, Oblongo, P.Squiva, P.squiva, Paul 14, Petruss, Potare, Pólux, Quijav, RASECZENITRAM, Raulshc, Retama, Rojasyesid, Rosarino, Rsg, Rumpelstiltskin, Sabbut, Sergio1982arm, Sgmonda, Simeón el Loco, Smrolando, Sol rezza, Srengel, SuperBraulio13, Taichi, Tamorlan, Tano4595, Technopat, TeleMania, Teresaq, Thomas Husak, Tirithel, Tomatejc, Tonchizerodos, Toshiharu, Tostadora, UA31, Unaiaia, VanKleinen, Varano, Waka Waka, Wikirom, Wildbill hitchcock, Will vm, YoaR, Yomo, Zeroth, Zufs, 583 ediciones anónimas Fuentes de imagen, Licencias y contribuyentes Archivo:FibPlot.png  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:FibPlot.png  Licencia: Public Domain  Contribuyentes: Kn Archivo:Fibonacci.JPG  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:Fibonacci.JPG  Licencia: Public Domain  Contribuyentes: Kalajoki Archivo:FibonacciBlocks.svg  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:FibonacciBlocks.svg  Licencia: Creative Commons Attribution-ShareAlike 3.0 Unported  Contribuyentes: Borb, 1 ediciones anónimas Archivo:Fibonacci phi.JPG  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:Fibonacci_phi.JPG  Licencia: Public Domain  Contribuyentes: Thomas Husak Archivo:Fibonacci continuous.png  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:Fibonacci_continuous.png  Licencia: Public Domain  Contribuyentes: Fredrik Johansson Archivo:Lucas continuous.png  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:Lucas_continuous.png  Licencia: Public Domain  Contribuyentes: Kn Archivo:FibbonacciRecurisive.png  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:FibbonacciRecurisive.png  Licencia: Creative Commons Attribution-ShareAlike 3.0 Unported  Contribuyentes: kn Archivo:FibDC Example.png  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:FibDC_Example.png  Licencia: Creative Commons Attribution-ShareAlike 3.0 Unported  Contribuyentes: kn Archivo:Fibonaccis Traum.jpg  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:Fibonaccis_Traum.jpg  Licencia: Creative Commons Attribution-Sharealike 3.0,2.5,2.0,1.0  Contribuyentes: Foto: Marinelli, Kunstwerk von Martina Schettina Archivo:Commons-logo.svg  Fuente: http://es.wikipedia.org/w/index.php?title=Archivo:Commons-logo.svg  Licencia: logo  Contribuyentes: SVG version was created by User:Grunt and cleaned up by 3247, based on the earlier PNG version, created by Reidab. Licencia Creative Commons Attribution-Share Alike 3.0 //creativecommons.org/licenses/by-sa/3.0/ 12

×