Algebra Vectorial

45,467 views

Published on

Álgebra Vectorial

1. Vectores en el plano y en el espacio
1.1. Simetría de puntos en los sistemas coordenados de dos y tres dimensiones.
1.2. Vector dirigido
1.3. Componentes escalares de un vector dirigido sobre los ejes coordenados en el plano y en el espacio.
1.4. El vector como pareja y como terna ordenada de números reales.
1.5. Definición de vector de posición
1.6. Módulo de un vector como conjunto ordenado de números reales.
2 Operaciones con vectores
2.1. Igualdad de vectores
2.2. Adición de vectores en dos, tres y n dimensiones
2.3. Sustracción de vectores
2.4. Multiplicación por un escalar
2.5. Propiedades de las operaciones
2.6. Vector nulo y vector unitario
2.7. Distancia entre dos puntos como el módulo de la diferencia de dos vectores
3. Producto escalar de dos vectores
3.1. Vectores unitarios i, j, k
3.2. Forma trinómica de un vector
3.3. Definición de producto escalar
3.4 Ortogonal
3.5. Angulo entre dos vectores
3.6. Definición de componente vectorial y proyección de componente escalar de un vector sobre otro
3.7. Cosenos directores
4. Producto vectorial de dos vectores
4.1. Interpretación geométrica y propiedades
4.2. Definición de paralelismo geométrico y propiedades
4.3. Aplicación del producto vectorial al cálculo de áreas de un paralelogramo
4.4. Definición de producto mixto
4.5. Calculo de volúmenes mediante el producto mixto.
5. Uso de software matemático como instrumento verificador de resultados y herramienta de visualización en conceptos.

Published in: Education
1 Comment
24 Likes
Statistics
Notes
No Downloads
Views
Total views
45,467
On SlideShare
0
From Embeds
0
Number of Embeds
59
Actions
Shares
0
Downloads
1,816
Comments
1
Likes
24
Embeds 0
No embeds

No notes for slide

Algebra Vectorial

  1. 1. Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán Ingeniería en telecomunicaciones, sistemas y electrónica
  2. 2. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN INGENIERIA EN TELECOMUNICACIONES SISTEMAS Y ELECTRÓNICA ALGEBRA VECTORIAL GEOMETRÍA ANALITICA PRIMER SEMESTRE GRUPO 1161
  3. 3. UNAM FESC ITSE Algebra Vectorial 3 0. INDICE 0. INDICE............................................................................................................................................................................. 3 1. VECTORES EN EL PLANO Y EN EL ESPACIO.......................................................................................................... 5 1.1. SIMETRÍA DE PUNTOS EN LOS SISTEMAS COORDENADOS DE DOS Y TRES DIMENSIONES. ............................................... 5 1.2. VECTOR DIRIGIDO....................................................................................................................................... 11 1.3. COMPONENTES ESCALARES DE UN VECTOR DIRIGIDO SOBRE LOS EJES COORDENADOS EN EL PLANO Y EN EL ESPACIO........ 12 1.4. EL VECTOR COMO PAREJA Y COMO TERNA ORDENADA DE NÚMEROS REALES. ......................................................... 13 1.5. DEFINICIÓN DE VECTOR DE POSICIÓN.............................................................................................................. 15 1.6. MÓDULO DE UN VECTOR COMO CONJUNTO ORDENADO DE NÚMEROS REALES. ....................................................... 16 2 OPERACIONES CON VECTORES..............................................................................................................................20 2.1. IGUALDAD DE VECTORES .............................................................................................................................. 20 2.2. ADICIÓN DE VECTORES EN DOS, TRES Y N DIMENSIONES...................................................................................... 21 2.3. SUSTRACCIÓN DE VECTORES.......................................................................................................................... 23 2.4. MULTIPLICACIÓN POR UN ESCALAR ................................................................................................................ 23 2.5. PROPIEDADES DE LAS OPERACIONES ............................................................................................................... 26 2.6. VECTOR NULO Y VECTOR UNITARIO................................................................................................................. 26 2.7. DISTANCIA ENTRE DOS PUNTOS COMO EL MÓDULO DE LA DIFERENCIA DE DOS VECTORES........................................... 28 3. PRODUCTO ESCALAR DE DOS VECTORES..........................................................................................................31 3.1. VECTORES UNITARIOS I, J, K .......................................................................................................................... 31 3.2. FORMA TRINÓMICA DE UN VECTOR ................................................................................................................ 31 3.3. DEFINICIÓN DE PRODUCTO ESCALAR............................................................................................................... 32 3.4 ORTOGONAL .............................................................................................................................................. 33 3.5. ANGULO ENTRE DOS VECTORES ..................................................................................................................... 33 3.6. DEFINICIÓN DE COMPONENTE VECTORIAL Y PROYECCIÓN DE COMPONENTE ESCALAR DE UN VECTOR SOBRE OTRO. ......... 34 3.7. COSENOS DIRECTORES................................................................................................................................. 37 4. PRODUCTO VECTORIAL DE DOS VECTORES......................................................................................................41 4.1. INTERPRETACIÓN GEOMÉTRICA Y PROPIEDADES ................................................................................................ 41 4.2. DEFINICIÓN DE PARALELISMO GEOMÉTRICO Y PROPIEDADES................................................................................ 44 4.3. APLICACIÓN DEL PRODUCTO VECTORIAL AL CÁLCULO DE ÁREAS DE UN PARALELOGRAMO........................................... 45 4.4. DEFINICIÓN DE PRODUCTO MIXTO.................................................................................................................. 46 4.5. CALCULO DE VOLÚMENES MEDIANTE EL PRODUCTO MIXTO. ................................................................................ 47 5. USO DE SOFTWARE MATEMÁTICO COMO INSTRUMENTO VERIFICADOR DE RESULTADOS Y HERRAMIENTA DE VISUALIZACIÓN EN CONCEPTOS...........................................................................................51 6 BIBLIOGRAFÍA...............................................................................................................................................................56
  4. 4. UNAM FESC ITSE Algebra Vectorial 5 ALGEBRA VECTORIAL La representación de objetos geométricos para el espacio de tres dimensiones, se simplifica grandemente si se utilizan las cantidades vectoriales (vectores) como apoyo para determinar las condiciones especiales que deberán satisfacer los puntos que pertenecen a dicho objeto. Un vector en Geometria es un ente geométrico definido por un segmento orientado de recta, que se utiliza para la representación de magnitudes llamadas magnitudes vectoriales. Por tanto, los vectores se representan gráficamente por segmentos acabados en una punta de flecha. Queda determinado su módulo por la longitud del segmento; su dirección por la recta a que pertenece; y su sentido por la punta de la flecha. Al origen del vector se le llama punto de aplicación. 1. Vectores en el plano y en el espacio 1.1. Simetría de puntos en los sistemas coordenados de dos y tres dimensiones. En el espacio de dos dimensiones, los puntos están definidos por una pareja ordenada de números reales; tienen dos coordenadas. Pueden representarse geométricamente en el plano determinado por dos ejes perpendiculares llamados coordenados, que se cortan en un origen común. Por facilidad, se acostumbra dibujar los ejes con direcciones horizontales y verticales, hacia la derecha y hacia arriba respectivamente; a dichos ejes se les denomina por lo general como ejes X y Y. A la distancia desde el eje Y a cualquier punto del plano. Se llama la abscisa del punto. A la distancia desde el eje X a cualquier punto del plano se le llama la ordenada del punto y se representa por el símbolo (x, y). La abscisa es positiva cuando el punto está a la derecha de eje Y, y negativa cuando está a la izquierda. La ordenada es positiva cuando el punto se localiza arriba del eje X, y
  5. 5. UNAM FESC ITSE Algebra Vectorial 6 negativa cuando se localiza abajo. En esta forma en cada punto del plano, puede hacerse corresponder una pareja ordenada de valores (x, y), y a cada pareja ordenada de valores (x, y) puede hacerse corresponder un punto del plano. Al sistema descrito, se le conoce como sistema cartesiano en el espacio de dos dimensiones. A si por ejemplo, los puntos pueden representarse geométricamente como se muestra en la Figura 1.1. En un plano de tres dimensiones, los puntos están definidos por una terna ordenada de números reales; tienen tres coordenadas. En este caso suele utilizarse como sistema de referencia para la representación geométrica de un punto, el definido por tres ejes perpendiculares entre sí (cada una de ellos perpendiculares a los otros dos), que se cortan en un origen común. A este sistema se le conoce como sistema cartesiano en el espacio de tres dimensiones. Los ejes se llaman coordenados y se denominan normalmente con las letras X, Y y Z. los ejes X y Y se acostumbra dibujarlos en el plano horizontal y el eje Z quede por tanto, vertical. Si las direcciones positivas de los ejes coordenados corresponden a las mostradas en la Figura 1.2 el sistema se llama derecho. Un sistema izquierdo es el de la Figura 1.3. En general es más común utilizar sistemas de coordenados derechos. . Figura 1.1. Figura 1.2 Sistema Derecho Figura 1.3 Sistema Izquierdo
  6. 6. UNAM FESC ITSE Algebra Vectorial 7 Figura 1.4 Ejes y Planos Coordenados Los tres ejes definen tres planos llamados Planos Coordenados, que dividen al espacio tridimensional en ocho partes llamadas octantes. El plano XY contiene a los ejes X y Y, el plano XZ contiene a los ejes X y Z y el plano YZ contiene a los ejes Y y Z, Figura 1.4. Un punto cualquiera del espacio tridimensional queda definido si se conocen sus tres distancias dirigidas a los tres planos coordenados. La distancia del punto a plano YZ se llama abscisa o coordenada X; su distancia de XZ se le llama ordenada o coordenada Y; por último, su distancia al plano XY se llama cota o coordenada Z. En esta situación a cada punto del espacio puede hacerse corresponder una terna ordenada de valores (X, Y, Z), y a cada terna ordenada de valores (X, Y, Z) puede hacerse corresponder un punto del espacio. Así por ejemplo, la representación geométrica del punto P de coordenadas (2, 3, 3) puede hacerse como se muestra en la Figura 1.5. Para espacios de mas de tres dimenciones, los puntos no se pueden representar gometricamente. Para establecer la simetria de puntos en el espacio de tres dimenciones, es necesario revisar algunos conceptos geometricos. P X Y Z 2 3 3 Figura 1.5. Representación de puntos en el espacio
  7. 7. UNAM FESC ITSE Algebra Vectorial 8 DEFINICION 1. Dados puntos y son simetricos con respecto a un tercero 0, si este es un punto medio del segmento . DEFINICION 2. Dados puntos son simetricos con respecto a una recta L, si esta es mediatriz del segmento . DEFINICION 3. Dos puntos son simetricos con relacion a un plano , si éste es normal bisector del segmento . Con base a la definicion una, a todo punto P(X, Y, Z) del espacio de tres dimenciones le corresponde un simetrico (-X, -Y, -Z) con respecto al origen (Figura 1.9). P 0 𝑃 Figura 1.6. Simetría con respecto a un punto 90° M P 𝑃 𝑃𝑀 = 𝑀𝑃L Figura 1.7. Simetría con respecto a una recta 90° M 𝑃𝑀 = 𝑀𝑃 𝜋 𝑃 P Figura 1.8. Simetría con respecto a un plano
  8. 8. UNAM FESC ITSE Algebra Vectorial 9 Como consecuencia inmediata de la definicion dos, a todo punto del espacio de tres dimensiones le corresponde un simetrico con respecto al eje X (Figura 1.10) Los puntos y son simetricos con respecto al eje X, pues este eje es mediatriz del segmento . Tambien el punto punto tiene sus simetricos respecto a los ejes Y y Z que son y . A si mismo, como consecuencia de la definicion tres a todo punto del espacio de tres dimenciones le corresponde un simetrico con respecto al plano ordenado XY (Figura 1.11). Y X Z 𝑃 𝑥 𝑦 𝑧 P(x, y, z) Figura 1.9. Simetría con respecto al origen. Y Z 𝑃 𝑥 𝑦 𝑧 P (x, y, z) X 90° Figura 1.10. Simetría con respecto al eje X
  9. 9. UNAM FESC ITSE Algebra Vectorial 10 Los puntos y son simetricos con respecto al plano XY, pues este plano es normal bisector del segmento . Ademas el puntos tiene sus simetricos respecto a los planos YZ y XZ que son y respectivamente. Ejemplo 1.1 Dado el punto Q (-1, -4, 2) encontrar sus simétricos respecto al origen, ejes y planos del sistema de referencia. Solución: Respecto al origen, (1, 4, -2) Respecto al eje X, (-1, 4, -2) Respecto al eje Y, (1,-4, -2) Respecto al eje Z, (1, 4, 2) Respecto al plano XY, (-1, -4, -2) Respecto al plano YZ, (1, -4, 2) Respecto al plano XZ, (-1, 4, 2) 90° 𝑃 𝑥 𝑦 𝑧 P (x, y, z) X Y Z Figura 1.11. Simetría con respecto al plano XY.
  10. 10. UNAM FESC ITSE Algebra Vectorial 11 1.2. Vector dirigido En ingenieria es frecuente encontrarsecon cantidades que poseen magnitud y direccion; entre éstas se tienen la fuerza, la velocidad, la aceleracion, el desplazamiento, etc. A este tipo de cantidades se le denomina cantidades vectoriales o vectores. Cabe aclarar que existen muchos entes matematicos que tambien se definen como vectores, pero en este curso el concepto de vector lo restringiremos exclusivamente a las cantidades que poseen magnitud y direccion. Para representar geometricamente a un vector se utiliza el segmento dirigido, el cual es un segmento de recta entre dos puntos al que se le asigna un sentido de recorrido. Por ejemplo, en la Figura 1.12 se muestra un segmento dirigido entre los puntos P y Q; a este segmento dirigido se le designa como ̅̅̅̅, en donde la primera letra indica el punto inicial llamado origen y la segunda el punto final llamado extremo. Es facil ver que los segmentos dirigidos presentan las caracteristicas de un vector a saber: direccion, dada por la direccion de la recta y por el sentido de recorrido (la flecha) y magnitud , dada por la longitud del segmento. A fin de describirlos vectores desde un punto de vista analítico, es conveniente considerar que dos vectores son iguales si tienen la misma magnitud y la misma direccion, es decir se establece que un vector no se latera si se mueve paralelamente a si mismo, Figura 1.13. Bajo la consideracion anterior, el origen de cualquier vector ̅ se puede hacer coincidir con el correspondiente de un sistema coordenado rectangular, con lo que es factible establecer una descripcion de un vector en forma exclusivamente numerica. Q (extremo) ̅̅̅̅ P (origen) Figura 1.12 Vector dirigido 𝑎̅ 𝑏̅ Figura 1.13. 𝒂̅ = 𝒃̅
  11. 11. UNAM FESC ITSE Algebra Vectorial 12 1.3. Componentes escalares de un vector dirigido sobre los ejes coordenados en el plano y en el espacio. Considerese un vector ̅ representado graficamente por un segmento dirigido cuyo punto inicial es el origen del sistema y con punto final , véase figura 1.14. A los tres numeros reales se les denomina las componentes escalares del segmento dirigido ̅̅̅̅ sobre los ejes coordenados; y dado que ̅̅̅̅ representa graficamente al vector ̅, se dice que estos numeros son las componentes de dicho vector y en esta forma el vector ̅ se expresa como : ̅ = , donde es la componente X, es la componente Y y es la componente Z. si se considera ahora a un vector ̅ representado geometricamente por el segmento dirigido ̅̅̅̅, las coordenadas de R y S son respectivamente ( , entonces se dice que dicho vector tiene componente a, ̅ = . Como se puede observar e la Figura 1.8, los vectores ̅ ̅ tienen la misma magnitud y direccion por lo que son iguales, y por otra parte de la misma figura se tienen que: = = = De esta forma sepuede establecer que si dos vectores cualesquiera son iguales, tienen las mismas componentes; e inversamente, dos vectores con las mismas componentes son necesariamente iguales en magnitud y direccion. Asimismo se concluye que un vector queda Figura 1.14. Componentes de un segmento dirigido.
  12. 12. UNAM FESC ITSE Algebra Vectorial 13 completamente determinado especificando, en forma ordenada, los tres numeros reales que constituyen sus componentes. Una ecuación vectorial ̅ = ̅, donde ̅ = y ̅ = , es una forma breve de representar las siguientes tres igualdades entre números reales: = = = Para el caso de vectores definidos en el plano, estos tienen dos componentes. Así por ejemplo en el vector ̅ = es la primera componente o componente X y es la segunda o componente Y, Figura 1.15. 1.4. El vector como pareja y como terna ordenada de números reales. Un número real puede ser representado como un punto de una línea recta, una pareja de números reales puede ser representada por un punto en el plano y una terna de números reales puede ser representada por un punto en el espacio. Aunque no se pueda dar una representación geométrica de las n-tuplas ordenadas existen interpretaciones útiles para ellas. Por ejemplo como solución de un sistema de ecuaciones lineales de n incógnitas, al igual que en el espacio de dos dimensiones nos referimos a los pares ordenados como puntos del espacio de dos dimensiones nos referimos a las n-tuplas ordenadas como puntos en el espacio de n dimensiones. X Y 𝑐 𝑐 𝑐̅ Figura 1.15. Vectores en el plano Figura 1.16a. Figura 1.16b.
  13. 13. UNAM FESC ITSE Algebra Vectorial 14 Definición Una n-tupla de números reales se denota por donde cada es un número real. Las n-tuplas de números reales y son iguales sí. El conjunto formado por todas las n-tuplas de números reales ordenadas se denota por, es decir = { } Definición Si y son n-tuplas de números reales, se define la suma como la n-tupla se dice que la suma se define con base a sus componentes. Como vimos anteriormente a cada punto del plano coordenado se le puede asociar un vector fijo. Si es una pareja ordenada de números reales (un vector de) le podemos asociar el vector libre OX que tiene por punto inicial el origen de coordenadas O y por punto terminal X. Figura 1.16c. Figura 1.17.
  14. 14. UNAM FESC ITSE Algebra Vectorial 15 1.5. Definición de vector de posición Definición. Sea el punto A en el espacio de tres dimensiones, cuyas coordenadas son ; se llama vector de posición de este punto al representado por el segmento dirigido que va del origen del sistema a dicho punto. Designado por ̅ al vector de posición de punto A, sus componentes son:̅ = ̅̅̅̅ = = entonces como se ve, los componentes del vector de posición son siempre iguales a las coordenadas del punto, como se ilustra en la Figura 1.18. Entonces puede establecerse una relación de correspondencia uno a uno entre el conjunto de puntos en el espacio de tres dimensiones, y el conjunto de vectores de posición en el mismo espacio. Es decir a cada punto del espacio de tres dimensiones le corresponde uno y solo un vector de posición, y viceversa. Esta misma situación se presenta para los conjuntos de puntos y vectores de posición en el plano. En general esta correspondencia existe, cualquiera que sea la dimensión del espacio en que se trabaje. Es importante mencionar que en el espacio de tres dimensiones, tanto los puntos como los vectores están dados por una terna ordenada de números reales. Sin embargo la terna de números reales que representa a un punto determina la posición del punto en el sistema de referencia. Por otra parte, la terna ordenada de números reales que 𝑎̅ = 𝐴̅̅̅̅ = 𝑎 𝑎 𝑎 A 𝑎 𝑎 𝑎 0 X Y Z Figura 1.18. Vectores de posición del punto A
  15. 15. UNAM FESC ITSE Algebra Vectorial 16 representa a un vector son sus componentes, es decir, las proyecciones dirigidas del vector sobre los ejes coordenados del sistema de referencia. 1.6. Módulo de un vector como conjunto ordenado de números reales. El módulo de un vector, es la magnitud del mismo. El símbolo | |̅̅̅̅ se utilizara para denotar el modulo del vector ̅. Una forma simple de deducir la expresión para calcular el modula de un vector a partir de sus componentes, es como se muestra a continuación. Para cada caso de un vector definido en el espacio de tres dimensiones, véase la siguiente Figura: Se tiene: Del triángulo rectángulo 0MN, aplicando el teorema de Pitágoras: = √ = √ Y del triángulo rectángulo 0AN, por el teorema de Pitágoras: Z Y X N𝑎 𝑎 𝑎𝑎̅ A M 0 1 Figura 1.19. Módulo de un vector
  16. 16. UNAM FESC ITSE Algebra Vectorial 17 |𝑐|̅̅̅̅ = √𝑐 𝑐 𝑐̅ 𝑐 Y X 𝑐 𝑐 𝑐|𝑐̅| Figura 1.20. Módulo de un vector en el plano | |̅̅̅̅ = = √ = √ Por lo tanto, el modulo del vector ̅, es: Para el caso de vectores definidos en el plano, como se observa de la Figura 1.20, aplicando el teorema de Pitágoras, el modulo vector ̅ es: Ejemplo 1.2 Determinar el módulo de los siguientes vectores: ̅ = ̅ = ̅ = Solución: |̅| = √ = √ |̅| = √ = √ | ̅| = √ = | |̅̅̅̅ = √
  17. 17. UNAM FESC ITSE Algebra Vectorial 18 Figura 1.21. Ejemplo 1.3 Demostrar que los puntos A (7, 5), B (2, 3), C (6, -7) son los vértices de un triángulo rectángulo, Figura 1.21. Solución: Definiendo los siguientes vectores sobre los lados del triángulo: ̅ = ̅̅̅̅ = = = ̅ = ̅̅̅̅ = = = ̅ = ̅̅̅̅ = = = Los módulos de estos vectores, o longitudes de los lados del triángulo, son: |̅| = √ = √ |̅| = √ = √ | ̅| = √ = √ Como se cumple que: | | = | | | | 145 = 29 + 116 El concepto de un vector, puede extenderse a espacios con más de tres dimensiones, no así su representación geométrica. En el espacio de n dimensiones, un vector se define como sigue: DEFINICION: Un vector en el espacio de n dimensiones se define como una n-ada de números reales, es decir, un arreglo ordenado de n números reales . Al i-ésimo numero de este arreglo, se le llama i-ésima componente del vector. Al conjunto de todos los vectores de n dimensiones se le llama espacio de n dimensiones o simplemente, espacio n. Obsérvese que la definición dada es consistente con la Entonces de acuerdo con el teorema de Pitágoras, es un triángulo rectángulo.
  18. 18. UNAM FESC ITSE Algebra Vectorial 19 descripción geométrica, mencionada previamente, para los vectores en los espacios de dos y tres dimensiones. Asimismo el concepto de módulo de un vector que es la longitud o magnitud del mismo, se puede hacer extensivo para vectores definidos en espacios mayores de tres dimensiones. En general el módulo de un vector en el espacio de n dimensiones, |̅| , se obtiene como: |̅| = √ Por ejemplo supóngase que tenemos un vector ̅ en el espacio de seis dimensiones. ̅ = El modulo del vector ̅ esta dado por la expresión: |̅| = √ = √ |̅| = √ En espacios mayores de tres dimensiones, los vectores y sus características no tienen interpretación geométrica. Ejercicios 1) Halla el módulo del vector u= (-3,4). Solución: |⃗ | = | | = √ |⃗ | = √ = √ = 2) Hallar el módulo de los siguientes vectores: ⃗ ( √ √ ) Solución: |⃗ | = = √
  19. 19. UNAM FESC ITSE Algebra Vectorial 20 |⃗ | = √ = √ | | = = √ | | = √ = √ = √ | | = ( √ √ ) = √( √ ) ( √ ) | | = √ √ √ = √ = √ = √ = 2 Operaciones con vectores 2.1. Igualdad de vectores Dos vectores se llaman iguales, si tienen la misma magnitud y la misma dirección. Para decir que dos vectores son iguales sus componentes correspondientes deben ser idénticas. Por ejemplo: a= {1; 2; 4} b= {1; 2; 2} c= {1; 2; 4} a=c así que sus coordenadas son iguales; a≠b así que sus coordenadas no son iguales. Este es un ejemplo de igualdad de vectores todos tienen la misma magnitud y misma dirección, solamente están ubicados en diferentes lugares y tienen diferente grosor (son bidimensionales).
  20. 20. UNAM FESC ITSE Algebra Vectorial 21 Ejemplo 2: Verificar que los vectores a y b son iguales, donde a parte del punto A y llega a B y b parte de C y llega a D; A (-1, 3,4) B (4, 2,6) C (1,-2,-6) D (6,-3,-4) a= AB= (4, 2,6) - (-1, 3,4)= (5,-1,2) b= CD= (6,-3,-4) - (1,-2,-6)= (5,-1,2) 2.2. Adición de vectores en dos, tres y n dimensiones Métodos algebraicos Para obtener la suma de los vectores de n dimensiones, solamente se suman sus componentes correspondientes. Ejemplo en dos dimensiones U= (5,4) V= (10,4) U+V= (5+10,4+4) U+V= (15,8) Ejemplo en tres dimensiones Encontrar el vector c dado los vectores A y B. A= (3, 2, 3) B= (2, 2, 0) A+B= (3+2 ,2+2, 3+0) A+B = (5, 4, 3) Representación gráfica por método de paralelogramo. Ejemplo en n dimensiones En n dimensiones: u= (u1,u2,..,un) v = (v1, v2,.., vn) u + v= (u1 + v1, u2 + v2,..,un+ vn)
  21. 21. UNAM FESC ITSE Algebra Vectorial 22 Dados los vectores u= (2,4, 6,8) y v = (1,3, 6,8) u + v = (2+1, 4+3, 6+6, 8+8) u + v= (3, 7, 12, 16) Métodos gráficos Solamente se pueden utilizar en las sumas de dos y tres dimensiones. Ejemplo del método del paralelogramo en tercera dimensión. Se trazan paralelas a los vectores originales para construir un paralelogramo y después sacar la diagonal de este y esa es la suma de los vectores. Solamente se trazan los vectores uno sobre otro, es decir el punto final de uno con el punto inicial del otro y posteriormente se une el origen del inicial con el final del segundo la resultante será la suma de los vectores. a b
  22. 22. UNAM FESC ITSE Algebra Vectorial 23 2.3. Sustracción de vectores Método algebraico La sustracción de vectores u-v, se puede definir a partir de la adición como: u – v= u + (-v)= (u1, u2,… un)+ (-v1,-v2,…-vn) u – v= (u1-v1, u2-v2,… un-vn) Al vector resultante de la sustracción de dos vectores se le conoce como la diferencia de los vectores u y v. Ejemplo: Hallar u-v u= (-2,6) v= (2,5) u-v= (-2-2, 6-5)= (-4, 1) Método grafico Restar dos vectores es sumar al primero el opuesto del segundo. 2.4. Multiplicación por un escalar Para obtener la resta de vectores por este método se traza el opuesto del segundo vector, posteriormente se suma el primer vector con el opuesto del segundo, donde la diagonal resultante será el vector u-v.
  23. 23. UNAM FESC ITSE Algebra Vectorial 24 El resultado de multiplicar un real k por un vector v, expresado analíticamente por kv es otro vector. Si el escalar a es mayor que uno el resultado de la multiplicación será un vector con la misma dirección de u, pero con módulo mayor que a. au; a>1 Si el escalar es mayor que cero pero menor que uno el resultado será un vector con la misma dirección de a, pero con módulo menor. au; 0<a<1 Cuando el escalar es mayor que menos 1 pero menor que cero se obtendrá un vector paralelo al vector a, pero con dirección opuesta y módulo menor. au; -1<a<0 Finalmente si el escalar es menor que menos uno el resultado será un vector paralelo al vector a, pero con dirección opuesta y modulo mayor. au; a<-1 Algebraicamente tenemos que multiplicar el escalar por cada una de las coordenadas del vector. Aquí se muestran ejemplos de un vector multiplicado por escalares tanto negativos como positivos y se observa que la magnitud y dirección ahora depende del escalar que está multiplicando a nuestro vector.
  24. 24. UNAM FESC ITSE Algebra Vectorial 25 Ejemplo 1: Dados el vector u = (1, 2, 4) y escalar 7 encontrar el producto 7u 7*u= (7*1, 7*2, 7*4) 7*u= (7, 14, 28) Ejemplo 2: Dados los puntos A (2,-1,3) y B (0,-5,-4) y los vectores p= (2, 2,-1) y q= (-2, 0,3), encontrar el vector: 3p-2q+5BA+3b-2a, siendo a y b los vectores de posición de los puntos A y B respectivamente. 3p= 3(2, 2, -1) = (6, 6, -3) 2q= 2(-2, 0, 3) = (-4, 0, 6) BA= (2,-1,3) – (0,-5,-4)= (2, 4, 7) 5BA= 5 (2, 4, 7)= (10, 20, 35) 3b= 3(0,-5,-4) = (0, -15, -12) 2a= 2(2, -1, 3) = (4, -2, 6) 3p-2q+5BA+3b-2a = (6, 6, -3)-(-4, 0, 6) + (10, 20, 35) + (0,-15,-12) - (4,-2,6) = (6+4+10-4, 6+20-15+2, -3-6+35-12-6)= (16, 13, 8) Ejemplo 3: Dados tres puntos colineales en el espacio de tres dimensiones, p1 (-2, 1, -3), p2 (1, 4, 0) y p3 (2, 5, 1). Determinar el escalar k que cumpla con la siguiente condición. k* p1p2 = p1 p3 p1p2 = (1, 4, 0) - (-2, 1, -3) = (3, 3, 3) p1 p3 = (2, 5, 1) - (-2, 1, -3) = (4, 4, 4) k* (3, 3, 3) = (4, 4, 4) (3*k, 3*k, 3*k)= (4, 4, 4) 3*k=4 K = 4/3
  25. 25. UNAM FESC ITSE Algebra Vectorial 26 2.5. Propiedades de las operaciones Propiedades de la suma  Cerradura: Si ay b son vectores en el espacio de n dimensiones entonces a+b también es un vector del espacio de n dimensiones.  Propiedad asociativa: (a + b) + c = a + (b + c) Se tiene que cumplir porque la suma de los correspondientes de los vectores tiene que ser igual no importando posición.  Identidad aditiva: Existencia de elemento o vector neutro por lo cual todas sus componentes son 0, vector nulo (0, 0,0). a+0= 0+a= a para todo vector a.  Inverso aditivo: para cada vector a existe un elemento opuesto,–a Entonces –a= (-a1,-a2, -an) Y siempre se cumple que: a+ (-a)=0 (-a)+a=0  propiedad conmutativa:a + b = b + a Propiedades de la multiplicación por un escalar.  Cerradura: Al multiplicar un vector por un escalar, da como resultado un vector del mismo espacio.  Conmutativa:k*v = v*k  Distributiva: Un escalar por dos vectores: k (u + v) = k*u + k*v Dos escalares por un vector: (k1+ k2) v = k1*v+ k2*v  Elemento neutro (1): 1* v = v  Elemento simétrico(-1): -1 * v = -v  Elemento nulo (0): 0 * v = 0 2.6. Vector nulo y vector unitario Vector nulo Es el vector cuyo modulo es 0. No tiene dirección ni sentido por lo cual todas sus coordenadas son 0. Por ejemplo en el plano sus coordenadas serian (0,0), en el espacio serian (0, 0, 0) hasta n dimensiones. Este vector ya había sido mencionado con anterioridad en las propiedades de la suma. Se puede observar que todo vector diferente del vector nulo tiene un módulo positivo, esto es, a> 0 si a≠ 0
  26. 26. UNAM FESC ITSE Algebra Vectorial 27 Vector unitario Se dice que es unitario cuando su módulo es igual a la unidad. Para cualquier vector a ≠ 0, siempre es posible determinar el vector unitario en su misma dirección. U=(| | ) U=(| | ) U=(| | | | | | ) Para encontrar las magnitudes de un vector Ejemplo 1: Encontrar el vector unitario en la misma dirección del vector. a= (2, -3, 7) │a│= √ = √ =√ Por lo tanto el vector unitario es: U=( √ √ √ ) Ejemplo 2: Determina un vector q, con la misma magnitud del vector P= 3a - 2b + c Y en dirección opuesta a la resultante de los vectores d y e. a= (2, 1, -3), b= (-1,-1,-1), c= (3,-2,4), d= (1,-2,8) y e= (2,-1,3) El vector p es: P=3a - 2b + c= 3(2, 1, -3) – 2(-1,-1,-1) + (3,-2,4) (6, 3, -9) – (-2, -2, -2)+ (3, -2, 4) P= (6+2+3, 3+2-2, -9+2+4) = (11, 3, -3)
  27. 27. UNAM FESC ITSE Algebra Vectorial 28 La magnitud da p es: │p│= √ = √ =√ Resultante de: d + e= (1,-2,8) + (2,-1,3) = (3, -3, 11) Vector unitario de la dirección │d + e│=√ = √ =√ (d+e) u = ( √ √ √ ) Po lo tanto el vector unitario en la dirección opuesta es: - (d+e) u = -( √ √ √ ) Y finalmente q = -│p│ (d+e) u = √ ( √ √ √ ) q= (-3, 3 -11) 2.7. Distancia entre dos puntos como el módulo de la diferencia de dos vectores. Módulo de un vector El modulo v es la raíz cuadrada positiva de la suma de los cuadrados de las coordenadas del vector. Ejemplo: Sea el vector v= (5,4) │v│= √ │v│=√ │v│=√ Método grafico c= √ c= √ c=√ c=√ Observando que el modulo es la longitud de la hipotenusa de un triángulo rectángulo cuyos catetos son las coordenadas del vector aplicamos el teorema de Pitágoras.
  28. 28. UNAM FESC ITSE Algebra Vectorial 29 Distancia entre puntos La distancia entre dos puntos A y B, d(A, B), es el modulo del vector AB. La distancia entre los puntos del plano A (-2,1) y B (3,5) es: d(A, B)=√ d(A, B)=√ d(A, B)=√ d(A, B)=√ El modulo es de √ Ejercicios 1) Considere el vector ̅ = 〈 〉encuentre la magnitud o norma del vector. | | = √ = √ = √ 2) Encontrar el vector unitario en la dirección del vector ̅ = │ ̅│= √ = √ =√ U=( √ √ √ )
  29. 29. UNAM FESC ITSE Algebra Vectorial 30 3) Encontrar un vector con magnitud 10 con dirección contraria al vector ̅ = -10* ̅ = = (10,-20, -40) 4) Dados los vectores ̅ = 〈 〉 y ̅ = . Hallar  ̅ ̅  3̅ ̅  ̅ ̅ ̅ ̅ Soluciones  ̅ ̅ = = =  ̅ ̅ = = ( ) = ( ) = ( ) = ( ) = ( )  ̅ ̅ ̅ ̅ = ̅ ̅ ̅ ̅ = ̅ ̅ = = = =
  30. 30. UNAM FESC ITSE Algebra Vectorial 31 3. Producto escalar de dos vectores 3.1. Vectores unitarios i, j, k En ocasiones es conveniente expresar un vector en términos de los vectores unitarios i, j, k que se muestran en la siguiente figura. En términos de sus componentes, los vectores unitarios quedas expresados como: = 〈 〉 = 〈 〉 = 〈 〉 3.2. Forma trinómica de un vector El vector ̅ = 〈 〉 puede expresarse como: ̅ = 〈 〉 = 〈 〉 〈 〉 〈 〉 ̅ = 〈 〉 〈 〉 〈 〉 ̅ = Esta expresión define al vector ̅ en la llamada forma trinómica. *Ejemplos Poner en forma trinómica los siguientes vectores ̅ = 〈 〉 = ̅ = 〈 〉 = ̅ = 〈 〉 =
  31. 31. UNAM FESC ITSE Algebra Vectorial 32 3.3. Definición de producto escalar El producto escalar de dos vectores en el espacio de dimensiones ̅ = y ̅ = denotado por denotado por ̅ ̅, que se lee ̅ punto ̅ se define como: ̅ ̅ = ∑ = *Por ejemplo *El producto escalar de ̅ = 〈 〉 ̅ = 〈 〉 es: ̅ ̅ = *El producto escalar de ̅ = 〈 〉 ̅ = 〈 〉 es: ̅ ̅ = *〈 〉 〈 〉 = = = *〈 〉 〈 〉 = = = *〈 〉 〈 〉 = = = Propiedades del producto punto 1. ̅ ̅ = ‖̅‖ 2.̅ ̅ = ̅ ̅ 3. ̅ = 4. (̅ ̅) = ̅ ̅ = ̅ = 5. = *Ejemplos Dados ̅ = 〈 〉 ̅〈 〉 y ̅ = 〈 〉 a)̅ ̅ b)(̅ ̅) ̅ c) d)‖ ̅‖ a)̅ ̅ = 〈 〉 〈 〉 = = = b)(̅ ̅) ̅ = 〈 〉 = 〈 〉 c)̅ ( ̅) = (̅ ̅) = = d)‖ ̅‖ = 〈 〉 〈 〉 = = =
  32. 32. UNAM FESC ITSE Algebra Vectorial 33 3.4 Ortogonal Dos vectores ̅ y ̅ son ortogonales si y solo si ̅ ̅ = Ejemplos: Cuál de los siguientes vectores son ortogonales: 1)̅ = 〈 〉 = 〈 〉 2)̅ = 〈 〉 = 〈 〉 1)̅ ̅ = 〈 〉 〈 〉 = = No existe ortogonalidad 2)̅ ̅ = 〈 〉 〈 〉 = = ̅ ̅ Determine el número α tal que ā= (1,-2,3) es ortogonal a ƃ= (1, α, 4) 1-2α+7=0 -2α=-8 α=4 Determine todos los números α y β tales que los vectores ā= (4, α, 2) y ƃ= (1, 1, -2β) 4+α+-4β=0 α=+4β-4 3.5. Angulo entre dos vectores | | = | | | | | || | | || | = | | = | | = | | = | | | | | | = | | | | = { [ ]} =. { [ ]}=. { }.= { }= = ̅ ̅ = |̅||̅| El ángulo ʘ es el ángulo que forman los vectores al considerar la siguiente figura Si se despeja de la expresión anterior a cos ʘ se tiene
  33. 33. UNAM FESC ITSE Algebra Vectorial 34 = ̅ ̅ |̅||̅| Es decir: = ( ̅ ̅ |̅||̅| ) Esta expresión calcula el ángulo que forman 2 vectores al considerar un origen común. A continuación se muestran las orientaciones posibles de dos vectores Ejemplo: Calcular el ángulo que forman los vectores ̅ = y ̅ = = ( √ √ ) = ( √ √ ) = √ √ = √ = ( √ ) = 3.6. Definición de componente vectorial y proyección de componente escalar de un vector sobre otro. Sean dos vectores cualesquiera ̅ y ̅ en un espacio de tres dimensiones. A partir de estos se puede definir: Un vector unitario ̅ , en la dirección ̅ Un escalar tal que el vector ̅ ̅ es ortogonal a ̅ La relación geométrica entre los elementos mencionados se representa en la siguiente figura:
  34. 34. UNAM FESC ITSE Algebra Vectorial 35 La componente vectorial de un vector ̅ sobre otro vector ̅, la cual se simboliza ̅ ̅ es un vector ̅ en el cual ̅ es un vector en la direccion de̅, y es un escalar tal que ̅ ̅ es ortogonal a̅. Al escalar se le llama componente escalar de ̅ sobre ̅, la que se simboliza ̅ ̅. La componente vectorial de ̅ sobre otro vector ̅ esta dada por la expresión: ̅ ̅ = ̅ ̅ |̅| ̅ |̅| = ( ̅ ̅ |̅| ) ̅. La componente escalar de ̅ sobre ̅ esta dada por la expresión: ̅ ̅ = ̅ ̅ |̅| . Regresando a la figura anterior en el triángulo rectángulo se tiene que: = | |̅̅̅̅ | | . Sustituyendo el valor de se tiene: = ̅ ̅ |̅| |̅| | | = ̅ ̅ | ̅||̅| . Dónde: ̅ ̅ = |̅||̅| Esto significa que el producto escalar de dos vectores diferentes del vector nulo, es igual al producto del módulo ̅, por el módulo de ̅, por el coseno del ángulo entre ̅ y ̅ son no negativos pero cosʘ puede ser positivo, negativo o cero. Por tanto el producto escalar ̅ ̅ es negativo únicamente cuando cosʘ es negativo es decir, únicamente cuando . Proyección de a ortogonal sobre b Los vectores a y proyba son la hipotenusa y un lado del triángulo rectángulo, respectivamente. El segundo lado del triángulo es entonces a- proyba Éste es un vector que es ortogonal a b y se le denomina proyección de a ortogonal a b. Ejemplo *En cada uno de los casos siguientes calcular ̅ ̅, ̅ ̅ y proyección ortogonal de a sobre b. a) ̅ = 〈 〉 ̅ = 〈 〉 b)̅ = 〈 〉 ̅ = 〈 〉 a1) ̅ ̅ = ̅ ̅ |̅| = √ = √ = √ √ √ = √ = √ a2) ̅ ̅ = ̅ ̅ |̅| ̅ |̅| = √ √ = = =
  35. 35. UNAM FESC ITSE Algebra Vectorial 36 a3) = b1) ̅ ̅ = ̅ ̅ |̅| = √ = √ = √ b2) ̅ ̅ = ̅ ̅ |̅| ̅ |̅| = √ √ = = ( ) = ( ) c2) ( ) = ( ). *Sean los puntos A (5,2,6); B(1,2,3) y C(9,4,9). Determina la componente vectorial de ̅̅̅̅ en la dirección de ̅̅̅̅ y representar gráficamente en la figura Solución: ̅̅̅̅ = = = ̅̅̅̅ = = = ) ̅̅̅̅ ̅̅̅̅ = ̅̅̅̅ ̅̅̅̅ |̅̅̅̅| ̅̅̅̅ |̅̅̅̅| = √ √ = . = ̅̅̅̅ ̅̅̅̅ = O ̅̅̅̅ ̅̅̅̅ = *Sea los vectores ̅ = ̅ = ̅ = Determinar los valores de b y c tales que la componente escalar de ̅ en la dirección ̅ sea igual a √ y la de ̅ en la dirección ̅ sea igual a √ . ̅ ̅ = √ . ̅ ̅ |̅| = √ . √ = √ = . ̅ = √ . ̅ ̅ |̅| = √ √ = √ = = Resolviendo sistema de ecuaciones entre: b-5c=27 b-4c=18 Se obtiene c=-9 y b=-18 *El ángulo entre los vectores ̅y ̅ es ʘ=30°. Si ̅=2 y ̅ =7 calcular: a) ̅ ̅ b) ̅ ̅ c)̅ ̅
  36. 36. UNAM FESC ITSE Algebra Vectorial 37 a) ̅ ̅ = | || | = | || | = = ( √ ) = √ b) ̅ ̅ = | || | = | || | = = = c)̅ ̅ = | || | = | || | = = = *Una lancha de 400 kg se encuentra sobre una rampa inclinada 30°, como se muestra en figura ¿Qué fuerza se requiere para impedir que la lancha resbale cuesta abajo por la rampa? Solución: F=(400kg)(-9.8m/s2 )=-3920N = = √ = = (| | ) = = ( ) = ( √ ). La magnitud de la furza que requiere para sostenerse es de 3920N Trabajo Supongase que la fuerza constante de un vector es = ⃗⃗⃗⃗⃗ que apunta a alguna dirección. Si la fuerza mueve al objeto P a O, entoces el vector de desplazamiento de = ⃗⃗⃗⃗⃗ . El trabajo hecho por esta fuerza se define como el producto de la componente de la fuerza a lo largo de D y la distancia recorrida = | | | | En forma escalar: = | | | | = Ejemplo *Un carrito es jalado una distancia de 150m a lo largo de una trayectora horizontal de una trayectora horizontal por una fuerza de 90N. La manija del carro se matiene en un angulo de 30° sobre la horizontal. = = | || | =(90N)(150)cos30°=11691.34 *Una fuerza esta dada por un vector F=3i+4j+5k y mueve una particula del punto P(2,1,0) al punto Q(4, 6, 2). Encuentre el trabajo hecho. = 〈 〉 〈 〉=6+20+10=36 W=36 Joules 3.7. Cosenos directores Para describir la dirección de un vector ̅ = usualmente se hace considerando tres ángulos y conforme a lo siguiente:
  37. 37. UNAM FESC ITSE Algebra Vectorial 38 Los ángulos directores de un vector ̅ son los ángulos y que respectivamente forma el vector con los vectores unitarios i, j y k La expresión para calcular ángulos directores es la siguiente: = |̅| = ̅ |̅|| | = |̅| = |̅| = ̅ |̅|| | = |̅| = |̅| = ̅ |̅|| | = |̅| Los cosenos directores de un vector no pueden ser arbitrarios y su relación se puede establecer como: = |̅| |̅| |̅| = |̅| = |̅| |̅| = Que es otra expresión que se relaciona a los cosenos directores del vector ̅ Ejemplos *Encontrar los ángulos directores de los siguientes vectores a)̅ = | | = √ = √ = √ = Por tanto los cosenos directores son: = , = , = , = = = *Sea el vector ā, dos de cuyos cosenos directores son: = = . Obtener un vector ƃ cuyo módulo sea igual a 18 unidades y que tenga la misma dirección del vector ā. Solución: = = . = . = .. = √ .. ̅ = ( √ ). = √
  38. 38. UNAM FESC ITSE Algebra Vectorial 39 EJERCICIOS PRODUCTO ESCALAR DE DOS VECTORES 1) Convertir a forma trinomica los siguientes vectores a)̅ = 〈 〉 b)̅ = 〈 〉 c)̅ = 〈 〉 2) De los siguientes ejercicios hallar: a) ̅ ̅ , b)‖̅‖ c) a) ̅ = 〈 〉 ̅ = 〈 〉 b) ̅ = 〈 〉 ̅ = 〈 〉 c) ̅ = ̅ = d) ̅ = ̅ = 3) ¿Cuál de los siguientes vectores son ortogonales? a)̅ = 〈 〉 ̅ = 〈 〉 b) ̅ = ̅ = c) ̅ = ̅ = d) ̅ = 〈 〉 ̅ = 〈 〉 4) Determine el número α tal que ā= (4,-2,-1) es ortogonal a ƃ= (1, 5, α) 5) Determine todos los números α y β tales que los vectores ā= (1,- 3α, 12) y ƃ= (4β, 5, -7) 6)En cada uno de los casos siguientes calcular ̅ ̅, ̅ ̅ y y proyección ortogonal de a sobre b. a) ̅ = 〈 〉 ̅ = 〈 〉 b)̅ = ̅ = 7) Sea los vectores ̅ = ̅ = ̅ = . Determinar los valores de b y c tales que la componente escalar de ̅ en la dirección ̅ sea igual a √ y la de ̅ en la dirección ̅ sea igual a √ . 8) Un camión de 5000 kg está estacionado sobre una pendiente de 10° .Si se supone que la única fuerza a vencer es la de la gravedad, hallar a)Diagrama b) la fuerza requerida para evitar que el camión ruede cuesta abajo y c) Fuerza perpendicular a la pendiente. 9) Un carro se remolca usando una fuerza de 1 600 newtons. La cadena que se usa para jalar el carro forma un ángulo de 25° con la horizontal. Encontrar el trabajo que se realiza al remolcar el carro 2km.
  39. 39. UNAM FESC ITSE Algebra Vectorial 40 10) Una fuerza esta dada por un vector F=7i+j-2k y mueve una particula del punto P(3,1,2) al punto Q(3, 2, 2). Encuentre el trabajo hecho. 11)El ángulo entre los vectores ̅y ̅ es ʘ=120°. Si ̅=4 y ̅ =8 calcular: a) ̅ ̅ b) ̅ ̅ c ) ̅ ̅ 12)Calcula a) ̅ ̅ b) ̅ ̅ c) ̅ ̅, si ̅=8 y ̅ =5 y ʘ= 13) Demuestre que para cualesquiera números reales α y β, los vectores u =αi+βj y v=βi-αj son ortogonales. 14) Hallar el ángulo ʘ entre los siguientes vectores a)̅ = ̅ = b) ̅ = ̅ = c) ̅ = ̅ = d) ̅ = ( ) ( ) ̅ = ( ) ( ) e) ̅ = ( ) ( ) ̅ = ( ) ( ) 15) Encontrar cosenos directores de los siguientes vectores a) ̅ = b) ̅ = c) ̅ = d) ̅ = 16) Hallar las componentes de un vector ̅ con módulo igual a 3 y cuyos ángulos directores son iguales. 17) Si un vector tiene ángulos directores α= π/4 y β= π/3 encuentre el tercer director γ 18) Sea el vector ā, dos de cuyos cosenos directores son: = = . Obtener un vector ƃ cuyo módulo sea igual a 18 unidades y que tenga la misma dirección del vector ā.
  40. 40. UNAM FESC ITSE Algebra Vectorial 41 4. Producto Vectorial de dos vectores 4.1. Interpretación geométrica y propiedades El producto vectorial de dos vectores es otro vector que se designa por o y que se obtiene del siguiente modo: 1º Si y son dos vectores no nulos y no proporcionales es un vector de: • Módulo es igual a: • Dirección es perpendicular a los dos vectores • Sentido igual al avance de un sacacorchos al girar de a . 2º Si ó ó y son proporcionales se tiene que Interpretación geométrica del producto vectorial Geométricamente, el módulo del producto vectorial de dos vectores coincide con el área del paralelogramo que tiene por lados a esos vectores. El área del paralelogramo es el producto de la base por la altura
  41. 41. UNAM FESC ITSE Algebra Vectorial 42 Propiedades del producto vectorial 1. Anti conmutativa 2. Homogénea 3. Distributiva del producto vectorial respecto de la suma de vectores 4. El producto vectorial de dos vectores paralelos es igual al vector nulo. = 5. El producto vectorial es perpendicular a y a . Propiedades Geométricas Del Producto Vectorial Sean y vectores distintos de cero en el espacio, y sea el ángulo entre y 1. u x v es ortogonal tanto a u como a v 2. ll u x v ll = ll u ll ll v ll sen α 3. u x v = 0 si y sólo si u y v son múltiplos escalares uno de otro. 4. ll u x v ll = área del paralelogramo que tiene u y v como lados adyacentes. Expresión analítica del Producto Vectorial Sea una base ortonormal de V3. Aplicando la definición de producto vectorial Siendo nulos todos los productos de un vector consigo mismo
  42. 42. UNAM FESC ITSE Algebra Vectorial 43 Sean dos vectores cualesquiera Y Su producto vectorial será: Y sustituyendo los productos entre los vectores de la base se llega a: Esta expresión se puede escribir como el siguiente determinante de orden 3 ` Ejercicio Dados hallar cada uno de los siguientes productos vectoriales: `
  43. 43. UNAM FESC ITSE Algebra Vectorial 44 Ejercicio Se aplica una fuerza vertical de 50 libras al extremo de una palanca de un pie de longitud unida a un eje en el punto P, como se muestra en la figura. Calcular el momento de esta fuerza respecto al punto P cuando α = 60˚. Si se representa la fuerza de 50 libras como F = -50k y la palanca como El momento de F respecto a P está dado por La magnitud de este momento es 25 libras-pie. Ejercicio Calcular u x v, v x u y v x v U= -2i + 4j V= 3i + 2j +5j a= (7, 3, 2) b= (1, -1, 5) 4.2. Definición de paralelismo geométrico y propiedades Dos rectas son paralelas o perpendiculares si lo son sus vectores directores Paralelismo: el vector v, de componentes (v1,v2), es paralelo al vector u, de componentes (u1,u2) si tienen la misma dirección, es decir si v = t·u:
  44. 44. UNAM FESC ITSE Algebra Vectorial 45 Es decir, son paralelos cuando sus componentes respectivas son proporcionales. Perpendicularidad: el vector v, de componentes (v1,v2), es perpendicular al vector u, de componentes (u1,u2) si su producto escalar es cero: v·u = 0; (v1,v2)·(u1,u2) = v1·u1 + v2·u2 = 0 Por lo tanto para estudiar el paralelismo o la perpendicularidad de dos rectas sólo hay que obtener sus respectivos vectores directores y hacer el anterior estudio. 4.3. Aplicación del producto vectorial al cálculo de áreas de un paralelogramo Área de un paralelogramo Área de un triángulo
  45. 45. UNAM FESC ITSE Algebra Vectorial 46 Ejemplo 4.4. Definición de producto mixto Hablamos de producto mixto porque intervienen el producto escalar y el producto vectorial y esto ya nos orienta a que deben intervenir 3 vectores. Se trata del producto escalar de uno de ellos por el producto vectorial de los otros dos, obteniendo un resultado numérico como el procedente del cálculo del volumen de un paralelepípedo (poliedro cuyas caras son paralelogramos). Sean los vectores. El producto es el producto mixto de tres vectores. El resultado no varía en el caso de que permutemos los factores en el mismo sentido de giro:
  46. 46. UNAM FESC ITSE Algebra Vectorial 47 En realidad, estamos multiplicando escalarmente, un vector por el producto vectorial de dos vectores, que sería como decir: multiplicamos el área de la base por la altura que equivale al volumen de un paralelepípedo. Sirviéndonos de lo ya estudiado tendríamos, suponiendo las coordenadas de los vectores: 4.5. Calculo de volúmenes mediante el producto mixto. El volumen de un ortoedro, como la de cualquier otro paralelepípedo se obtiene multiplicando el área de la base por la altura. Sabiendo que los vectores que forman la base corresponden a: y las componentes de la altura son: ¿Cuál es el valor de este ortoedro? Respuesta: Solución Dibujamos la figura y colocamos los datos que conocemos:
  47. 47. UNAM FESC ITSE Algebra Vectorial 48 Lo resolvemos: 21.69 Tenemos tres vectores cuyas componentes son: Responde, tras comprobar, si el valor escalar de es igual a Respuesta: Sí, son iguales a Solución La permutación exige que el factor que tomamos lo coloquemos por detrás “empujando” hacia la izquierda a los otros dos. Si no se respeta el sentido del giro produciremos un error.
  48. 48. UNAM FESC ITSE Algebra Vectorial 49 Ejercicio Calcular el volumen del paralelepípedo mostrado en la figura, que tiene u= 3i – 5j + k, v= 2j - 2k y w= 3i + j + k como aristas adyacentes. Ejercicios Calcular el producto vectorial de los vectores unitarios y dibujar su resultado 1. j x i 2. i x j 3. j x k Calcular el área del paralelogramo formado por los vectores adyacentes: 1. u= j v= j + k 2. u= (3, 2, -1) v= (1, 2, 3) Verificar que los puntos son los vértices de un paralelogramo y calcular su área 1. A (0, 3, 2), B(1, 0, 3), C(-3, 2, 0) 2. A (2, -3, 1), B(6, 5, -1), C(7, 2, 2), D(3, -6, 4) Calcular el área del triángulo con los vértices dados 3. A (0,0,0), B(1, 0 ,3), C(-3, 2, 0) 4. A (2,-3,4), B(0, 1, 2), C(-1, 2, 0) 5. A (2, -7,3), B(-1, 5, 8), C(4, 6, -1) 6. A (1, 2, 0), B(-2, 1, 0), C(0, 0, 0) Calcular u ∙ (v x w) 3. u= i + j + k v= j + k 4. u= (2, -1, 0) v= (-1, 2, 0) 4. k x j 5. i x k 6. k x i
  49. 49. UNAM FESC ITSE Algebra Vectorial 50 Usar el triple producto escalar para encontrar el volumen de los siguientes paralelepípedos:
  50. 50. UNAM FESC ITSE Algebra Vectorial 51 5. Uso de software matemático como instrumento verificador de resultados y herramienta de visualización en conceptos. El software que se usara como verificador de resultados herramienta visualizador en conceptos será maple. MAPLE Visualizador de vectores:
  51. 51. UNAM FESC ITSE Algebra Vectorial 52 Poner mas de un vector:
  52. 52. UNAM FESC ITSE Algebra Vectorial 53 Suma de vectores Producto punto de vectores
  53. 53. UNAM FESC ITSE Algebra Vectorial 54 Proyección de vectores Producto Cruz de dos vectores
  54. 54. UNAM FESC ITSE Algebra Vectorial 55
  55. 55. UNAM FESC ITSE Algebra Vectorial 56 6 Bibliografía Larson Ron Edwards Bruce H., Hostetler Robert P, Cálculo II 9na ed. México, editorial McGraw Hill. Grossman Stanley, Algebra Lineal, 6ta ed. México, editorial McGrawHill James Stewart Calculo de varias variables 6ta ed. México editorial Cengage Learning. Solís, R. Nolasco, J y Victoria A., Geometría analítica, México, Limusa- Facultad de Ingeniería, UNAM, 2003.
  56. 56. UNAM FES Cuautitlán. Ingeniería en Telecomunicaciones, sistemas y electrónica.

×