Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.
INTEGRANTES: ALEXANDER FLORES
CARLOS BUSTOS
ALEJANDRA ZURITA
MARJORIE CRUZ
GABRIELA CAIZA
CRISTINA GARCIA

GRUPO : 6
INTRODUCCIÓN
En esta exposición se pretende dar a conocer
y saber calcular las estimaciones puntuales y
por intervalos par...
OBJETIVOS
•Entender los conceptos de estimación,
estimación puntual y estimación por
intervalos
•Calcular las estimaciones...
ESTIMACIÓN
PUNTUAL

DEFINICIÓN

INSESGADO

PROPIEDADES

DE VARIANZA
MÍNIMA

CONSISTENCIA

EFICIENCIA
Que es una estimación ?
es cuando queremos realizar el estudio de una
población cualquiera de la que desconocemos sus
pará...
¿Que es una estimación puntual?
 Una estimación es puntual cuando se usa un solo valor extraído de la muestra
para estima...
PROPIEDADES DEL
ESTIMADOR
Sesgo. Se dice que un estimador es insesgado si la Media de la
distribución del estimador es igu...
Ejemplo
En una población de 500 puntuaciones cuya Media (m) es igual a
5.09 han hecho un muestreo aleatorio (número de mue...
La Varianza es un estimador sesgado. Ejemplo: La Media de las
Varianzas obtenidas con la Varianza

en un muestreo de 1000 ...
Estimador de la varianza
A la hora de elegir un estimador de
comenzar con el estimador más natural:

podemos

Podemos comp...
ESTIMACIÓN DE INTERVALO PARA
LA MEDIA POBLACIONAL Y σ
POBLACIONAL CONOCIDA

ESTIMACIÓN
POR INTERVALOS
DE CONFIANZA
ESTIMAC...
Definición
 En estadística, se llama intervalo de confianza a un

par de números entre los cuales se estima que estará
ci...
 La probabilidad de éxito en la estimación se representa

con 1 - α y se denomina nivel de confianza. En estas
circunstan...
¿Por qué hablamos de confianza y
no de probabilidad?
 En nuestro contexto, el parámetro poblacional es el que

es, y no a...
 La confianza del intervalo debe ser entendida como la

fracción de intervalos calculados a partir de una gran
serie de m...
Elemento de un intervalo de
confianza
 El nivel de confianza con el que deseamos trabajar.

No es una elección sin import...
El objetivo de este apartado es conseguir una estimación
de la media µ(desconocida) de una población, cuya
desviación típi...
Si partimos de una población que sigue una distribución Z ~ N(0,1) bastará
con encontrar el punto crítico zα/2 para tener ...
Una empresa de investigación llevó a cabo una encuesta para determinar la
cantidad media que los estudiantes gastan en sus...
95%

21.23
95%

18.77
La doctora Patton es profesora de Inglés. Hace poco contó el número de palabras
con faltas de ortografía en un grupo de en...
90%

6.69
90%

5.41
La asociación Estadounidense de productores de azúcar
desea calcular el consumo medio de azúcar por año.
Una muestra de 16...
FORMULA PARA ESTIMAR UN INTERVALO
PARA LA MEDIA POBLACIONAL
DESCONOCIDA
TABLA DE LA DISTRIBUCIÓN t-STUDENT
CONCLUSIONES
 se llama estimación al conjunto de técnicas que

permiten dar un valor aproximado de un parámetro de
una po...
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalos de confianza
Estimacion puntual, propiedades de las estimaciones; estimacion por intervalos de confianza
Upcoming SlideShare
Loading in …5
×

Estimacion puntual, propiedades de las estimaciones; estimacion por intervalos de confianza

33,111 views

Published on

ESTIMACION PUNTUAL, PROPIEDADES DE LAS ESTIMACIONES; ESTIMACION POR INTERVALOS DE CONFIANZA

Published in: Education

Estimacion puntual, propiedades de las estimaciones; estimacion por intervalos de confianza

  1. 1. INTEGRANTES: ALEXANDER FLORES CARLOS BUSTOS ALEJANDRA ZURITA MARJORIE CRUZ GABRIELA CAIZA CRISTINA GARCIA GRUPO : 6
  2. 2. INTRODUCCIÓN En esta exposición se pretende dar a conocer y saber calcular las estimaciones puntuales y por intervalos para la media ya sea conocida o no la desviación estándar poblacional , así como las estimaciones para la probabilidad de éxito en una binomial.
  3. 3. OBJETIVOS •Entender los conceptos de estimación, estimación puntual y estimación por intervalos •Calcular las estimaciones ( puntual y por intervalos )para la probabilidad de éxito. •Saber interpretar correctamente los resultados de la estimación por intervalos
  4. 4. ESTIMACIÓN PUNTUAL DEFINICIÓN INSESGADO PROPIEDADES DE VARIANZA MÍNIMA CONSISTENCIA EFICIENCIA
  5. 5. Que es una estimación ? es cuando queremos realizar el estudio de una población cualquiera de la que desconocemos sus parámetros por ejemplo su media poblacional o la probabilidad de éxito si la población sigue una distribución binomial , debemos tomar una muestra aleatoria de dicha población para calcular una aproximación a dichos parámetros q conocemos y queremos estimar .
  6. 6. ¿Que es una estimación puntual?  Una estimación es puntual cuando se usa un solo valor extraído de la muestra para estimar el parámetro desconocido de la población. Al valor usado se le llama estimador.  La media de la población se puede estimar puntualmente mediante la media de la muestra:  La proporción de la población se puede estimar puntualmente mediante la proporción de la muestra:  La desviación típica de la población se puede estimar puntualmente mediante la desviación típica de la muestra, aunque hay mejores estimadores:
  7. 7. PROPIEDADES DEL ESTIMADOR Sesgo. Se dice que un estimador es insesgado si la Media de la distribución del estimador es igual al parámetro. Estimadores insesgados son la Media muestral (estimador de la Media de la población) y la Varianza (estimador de la Varianza de la población)
  8. 8. Ejemplo En una población de 500 puntuaciones cuya Media (m) es igual a 5.09 han hecho un muestreo aleatorio (número de muestras= 10000, tamaño de las muestras= 100) y hallan que la Media de las Medias muestrales es igual a 5.09, (la media poblacional y la media de las medias muestrales coinciden). En cambio, la Mediana de la población es igual a 5 y la Media de las Medianas es igual a 5.1 esto es, hay diferencia ya que la Mediana es un estimador sesgado.
  9. 9. La Varianza es un estimador sesgado. Ejemplo: La Media de las Varianzas obtenidas con la Varianza en un muestreo de 1000 muestras (n=25) en que la Varianza de la población es igual a 9.56 ha resultado igual a 9.12, esto es, no coinciden. En cambio, al utilizar la Cuasivarianza la Media de las Varianzas muestrales es igual a 9.5, esto es, coincide con la Varianza de la población ya que la Cuasivarianza es un estimador insesgado.
  10. 10. Estimador de la varianza A la hora de elegir un estimador de comenzar con el estimador más natural: podemos Podemos comprobar que cuando el carácter que se estudia sobre la población es gaussiano, en realidad este es el estimador máximo verosímil para la varianza. Sin embargo se comprueba también su falta de sesgo, lo que hace mas adecuado que se utilice como estimador de la varianza al siguiente concepto: cuasi varianza muestral
  11. 11. ESTIMACIÓN DE INTERVALO PARA LA MEDIA POBLACIONAL Y σ POBLACIONAL CONOCIDA ESTIMACIÓN POR INTERVALOS DE CONFIANZA ESTIMACIÓN DE INTERVALO PARA LA MEDIA POBLACIONAL Y σ POBLACIONAL DESCONOCIDA DEFINICIÓN
  12. 12. Definición  En estadística, se llama intervalo de confianza a un par de números entre los cuales se estima que estará cierto valor desconocido con una determinada probabilidad de acierto. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional.
  13. 13.  La probabilidad de éxito en la estimación se representa con 1 - α y se denomina nivel de confianza. En estas circunstancias, α es el llamado error aleatorio o nivel de significación, esto es, una medida de las posibilidades de fallar en la estimación mediante tal intervalo.
  14. 14. ¿Por qué hablamos de confianza y no de probabilidad?  En nuestro contexto, el parámetro poblacional es el que es, y no asociamos ninguna probabilidad ni fenómeno aleatorio al respecto.
  15. 15.  La confianza del intervalo debe ser entendida como la fracción de intervalos calculados a partir de una gran serie de muestras de tamaño idéntico que contienen el valor verdadero del parámetro poblacional.
  16. 16. Elemento de un intervalo de confianza  El nivel de confianza con el que deseamos trabajar. No es una elección sin importancia, puesto que del nivel de confianza dependerá la precisión de la estimación que obtengamos, es decir, la anchura del intervalo. A mayor nivel de confianza exigido, mayor será el radio del intervalo y por tanto menor la precisión en la estimación. Generalmente se trabaja con niveles de confianza del orden del 90 % o 95 %.
  17. 17. El objetivo de este apartado es conseguir una estimación de la media µ(desconocida) de una población, cuya desviación típica σ es conocida. Para ello se recurre a una muestra de tamaño n, para la que se obtiene su media x~.
  18. 18. Si partimos de una población que sigue una distribución Z ~ N(0,1) bastará con encontrar el punto crítico zα/2 para tener un intervalo que contenga la media poblacional con probabilidad c. p(-zα/2 < Z < zα/2) = c Si en el caso general tomamos: En el caso de poblaciones que no son normales, o que simplemente no sabemos si lo son o no, necesitamos que el tamaño de la muestra sea suficientemente grande (n > 30) para poder aplicar el Teorema central del límite para obtener que el intervalo de confianza para la media μ de una población con desviación típica conocida σ es:
  19. 19. Una empresa de investigación llevó a cabo una encuesta para determinar la cantidad media que los estudiantes gastan en sus trabajos durante una semana. La semana encontró que la distribución de cantidades gastadas por semana tendía a seguir una distribución normal, con una desviación estándar de $5. Una muestra de 64 estudiantes revelo que =$20. a) ¿ Cuál es el estimador de intervalo de confianza de 95% para la µ? DATOS: n= 64 =20 σ=5 FORMULA:
  20. 20. 95% 21.23
  21. 21. 95% 18.77
  22. 22. La doctora Patton es profesora de Inglés. Hace poco contó el número de palabras con faltas de ortografía en un grupo de ensayos de sus estudiantes. Observó que la distribución de palabras con faltas de ortografía por ensayo se regía por una distribución normal con una desviación estándar de 2.44 palabras de ensayo. En su clase de 40alumnos de las 10 de la mañana, el número medio de las palabras con faltas de ortografía fue de 6.05. Construya un intervalo de confianza de 90% para el número medio de palabras con faltas de ortografía en la población de ensayos. DATOS: n= 40 =20 σ=5 FORMULA:
  23. 23. 90% 6.69
  24. 24. 90% 5.41
  25. 25. La asociación Estadounidense de productores de azúcar desea calcular el consumo medio de azúcar por año. Una muestra de 16 personas revela que el consumo medio anual es de 60 libras, con una desviación estándar de 20 libras. Construya un intervalo de confianza del 99% para la media de la población.
  26. 26. FORMULA PARA ESTIMAR UN INTERVALO PARA LA MEDIA POBLACIONAL DESCONOCIDA
  27. 27. TABLA DE LA DISTRIBUCIÓN t-STUDENT
  28. 28. CONCLUSIONES  se llama estimación al conjunto de técnicas que permiten dar un valor aproximado de un parámetro de una población a partir de los datos proporcionados por una muestra.  El nivel de confianza con el que deseamos trabajar dependerá la precisión de la estimación

×