SlideShare a Scribd company logo
1 of 302
Download to read offline
Sisteme mobile in Internet
  (Arhitectura si aplicatiile retelelor mobile)



              Nicolae Tomai
                 FSEGA

       nicolae.tomai@econ.ubbcluj.ro
http://www.econ.ubbcluj.ro/~nicolae.tomai
                    449
Cuprins
   Introducere
   Wireless LANs: IEEE 802.11
   Rutarea IP mobila
   TCP in retele fara fir
   Retele GSM
   Arhitectura retelelor GPRS
   WAP(Wireless application protocol)
   Agenti mobili(Mobile agents)
   Retele mobile si peer-to-peer(MANET-Mobile
    ad hoc networks)
                                                 2
References
 J. Schiller, “Mobile Communications”, Addison Wesley, 2000
 802.11 Wireless LAN, IEEE standards, www.ieee.org
 Mobile IP, RFC 2002, RFC 334, www.ietf.org
 TCP over wireless, RFC 3150, RFC 3155, RFC 3449
 A. Mehrotra, “GSM System Engineering”, Artech House, 1997
 Bettstetter, Vogel and Eberspacher, “GPRS: Architecture, Protocols
  and Air Interface”, IEEE Communications Survey 1999, 3(3).
 M.v.d. Heijden, M. Taylor. “Understanding WAP”, Artech House, 2000
 Mobile Ad hoc networks, RFC 2501

 Site-uri web:
   – www.palowireless.com
   – www.gsmworld.com; www.wapforum.org
   – www.etsi.org; www.3gtoday.com
                                                                 3
Retele fara fir
 Ofera servicii de acces la calcul/comunicare in miscare

 Retele celulare
   – Sisteme cu infastrucura bazata pe statii de baza


 Wireless LANs
   – Retele locale in topologie infrastructura(cu AP)
   – Foarte flexibile in zona de receptie
   – Banda de transmisie destul de buna(>1 Mbit/s….)


 Ad hoc Networks
   – Nu folosesc topologia infrastructura
   – Sunt folosite pentru aplicatii militare, de salvare, acasa, etc.
                                                                        4
Dispozitive mobile




                      Tablets
Palm-sized
                                   Clamshell handhelds




   Laptop computers             Net–enabled mobile phones
Sisteme de operare pentru disozitive mobile

  Symbian-promovat ca OS(open source) de un
   consortiu: Nokia, Motorola, etc.
  Windows Mobile-Microsoft
  Windows CE
  Windows mobile 7.0
  iPhone
  RIM BlackBerry
  Linux-cu varianta Android de la Google
  Palm OS

                                               6
Evolutia telefoanelor mobile




                               7
Spectrul alocat pentru telefoanele mobile




Sursa: (S60 Programming A Tutorial Guide Paul Coulton,
                                                         8
Reuben Edwards With Helen Clemson)
Elemente componente ale unui sistem de telefonie
                   mobila




                                              9
FDMA(Frecvency Division Multiple Access)(1G)




                                           10
TDMA(Time Division Multiple
      Access)(2G)




                              11
CDMA(Code Division Multiple Access)



 Permite utilizatorilor sa imparta atit timpul cit si frecventa
  in acelasi timp, prin alocarea unui numar unic de
  identificare
 Acest numar de identificare permite sistemului sa
  separe un apel de altul, daca acestea erau facute in
  acelasi timp
 E o tehnica de baza pentru telefoanele de generatia a
  treia (3G) si permite viteze mari de transfer pentru
  fiecare utilizator


                                                            12
CDMA(Code Division Multiple Access)




                                      13
Sistemul GPRS




•SGSN(Serving GPRS Support Node) controlează transmiterea pachetelor
de date prin întreaga reţea şi
•GGSN(Gateway GPRS Support Node) care are rolul de a conecta reţeaua
de telefonie mobilă la infrastructura Internetului.
                                                                14
Alocarea frecventelor in 3G




                              15
Alocarea frecventelor in 3G
   Europa şi Japonia au optat pentru banda largă CDMA (W- CDMA) folosind
    diviziunea frecvenţei(FDD) în două perechi de benzi ale spectrului de
    frecvenţă.
   USA a optat pentru CdmaOne care foloseşte benzi multiple ale sistemului
    pentru a realiza aşa numita undă purtătoare CDMA prin care se permitea
    accesul mai multor utilizatori în acelaşi timp.
   Un alt sistem 3G, care e mai degrabă o extensie a GRPS -ului a sporit
    transferul de date spre evoluţia GSM(EDGE), care modifică legăturile fără
    fir între telefoanele mobile şi staţia de bază a sistemului GSM/GPRS pentru
    îmbunătăţirea ratei de transfer a datelor, standard care a fost dezvoltat de
    3GPP.(3G Partnership Project)care a fost creat în urma asocierii a două
    categorii de organizaţii: organisme de standardizare şi reprezentaţi
    comerciali. Organismele de standardizare participante sunt ETSI (Europa),
    ARIB/TTC (Japonia), ANSI T1 (SUA) şi TTA (Coreea). Reprezentaţii pieţei
    de telecomunicaţii sunt UMTS Forum, GSA şi GSM Association. Cele trei
    reprezintă grupări majore de producători, operatori, companii de
    consultanţă, etc., care susţin interese comerciale proprii legate de evoluţia
    sistemului GSM
                                                                            16
W-CDMA in sistemul GSM/GPRS




                              17
Evolutia spre 4G




                   18
Evolutia sistemelor celulare




                               19
Limitari ale sistemelor mobile
 Limitări datorate retelelor fara fir
    Limitari ale largimii benzii de comunicatie
    Deconectari frecvente
    Eterogeneitatea si fragmentarea retelelor


 Limitări datorate mobilitatii
    rute defecte(intrerupte)
    Lipsa facilitatilor privind mobilitatea a
     sistemelor/aplicatiilor

 Limitări datorate dispozitivelor mobile
    Timp scurt de viata al bateriei
    Capacitati limitate(privind memoria, procesarea, etc.)
                                                          20
Comparatie intre retelele fara fir si cele cu fir
 Reglemetari ala frecventelor
   – Limitarea disponibilitatii si necesitatea coordonarii
   – Frecventele utilizate sunt deseori ocupate de alte aplicatii
 Latimea benzii si intirzierile
   – Rate de transmisie relativ mici
       • De la cativa Kbits/s la Mbit/s.
   – Intirzieri mari
       • Sute de milisecunde
   – Rata mare a pierderilor
       • susceptibile la interferenta, de ex, cu masini elecrice, siste de
         iluminat, etc.
 Partajeaza intotdeauna un mediu comun
   – Securitate scazuta, simplu de atacat
   – Interferente radio
   – Staţii de bază false poate atrage apelurile de pe telefoanele
     mobile
   – Necesita mecanisme de acces securizat
                                                                             21
Siteme celulare: ideea de baza

 Conectivitate fara fir cu un singur salt(hop)
   – Spatiul este divizat in celule
   – O statie de baza este responsabila cu comunicarea
     cu hosturile in celula ei
   – Hosturile mobile pot schimba celulele in timpul
     comunicarii
   – Operatia de hand-off apare atunci când o gazdă
     mobila începe comunicarea prin intermediul unei noi
     staţii de bază
 Factorii ce determina dimensiunea celulei
   – Numarul de utilizatori ce vor fi suportati
   – Multiplexarea si tehnologiile de transmisie
                                                      22
Conceptul celular
 Numarul limitat de frecvente => limiteaza numarul canalelor
 Puterea de emisie a antenei => limiteaza numarul
  utilizatorilor
 Celule mai mici => posibilitatea reutilizarii frecventelor =>
  mai multi utilizatori
 Statie de baza (BS): implementeaza multiplexarea diviziunii
  spatiului
   – Cluster: group de BS apropiate care impreuna utilizeaza toate
     canalele apropiate
 Statiile mobile comunica numai printr-o statie de baza
   – FDMA, TDMA, CDMA pot fi utilizate intr-o celula
 O cerere de crestere se face (mai multe canale sunt
  necesare)
   – Numarul statiilor de baza este crecut
   – Puterea de transmisie este redusa(descrescuta) corespunzator
     pentru a reduce interferentele
                                                                     23
Arhitectura sistemelor celulare
 Fiecare celula este deservita de o statie de baza(BS-Base Station)
 Fiecare sitem (BSS-Base Station Sistem) compus din statia de
  baza si dispozitivele “legate” la ea este conectat la un centru de
  comutare mobila (mobile switching center -MSC) prin legaturi fixe
 Fiecare MSC este conectat la alte MSC-uri si PSTN(Public
  Switched Telephone Network)



                     MSC                       MSC

                    HLR                       HLR
                                  La alte
                       VLR        MSC-uri        VLR




                     PSTN                      PSTN
                                                                 24
Apel de configurare pentru iesirea in
 retea-la apel(Outgoing call setup)
 Apel de configurare la iesire:
   – Se introduce numarul şi se trimite
   – Trnsmisiile mobile necesita o cerere de acces pe un
     canal ascendent(uplink)de semnalizare
   – Dacă reţeaua poate procesa apelul, BS trimite un
     mesaj de alocare a canalului
   – Reteaua procedeaza la setarea conexiunii(si
     realizeaza incasarea)
 Activitatea retelei:
   – MSC determina locatia curenta a tintei mobile
     utilizind HLR, VLR si prin comunicarea cu alte MSC-
     uri
   – MSC-ul sursa initiaza un mesaj apel de configurare
     la MSC-ul care acoperă zona ţintă               25
Apel de configurare la intrarea in
 retea-la primire(Incoming call setup)
 Apel de configurare la iesire:
   – MSC-ul tinta (ce acopera locatia curenta a mobilului)
     initiaza un mesaj de paginare
   – BS trimite mai departe(forward) mesajul de paginare
     pe canalul de aducere(downlink) in aria de acoperire
   – Daca mobilul este activat(monitorizand canalul de
     semnalizare), el raspunde la BS
   – BS trimite un mesaj de alocare a canalului si
     informeaza MSC-ul
 Activitatea retelei:
   – Reţeaua completează cele două jumătăţi ale
     conexiunii
                                                      26
Termenul de hand-off(predare –preluare) se referă la procesul de transfer al unui
apel sau sesiuni de date de la un canal conectat la reţeaua de bază pentru un altul

   Initierea BS-ului:
    – Parasirea unei celule si trecerea la una noua (hand-off) apare în
      cazul în care nivelul semnalului de telefonie mobilă scade sub un
      prag minim
    – Creste incarcarea pe BS
         •   Semnalul de monitorizare a fiecarui mobil
         •   Determinarea tintei BS pentru predare-preluare(hand-off)
   Asistarea mobilului:
    – Fiecare BS transmite periodic un semnal de prezenta/far(beacon)
    – Mobiul la receptionarea unui semnal de prezenta/far puternic de
      la un BS nou, iniţiază un proces de trecere(predare-primire)
   Intersistem:
    – Se mută mobilele peste zone controlate de către diferite MSC-uri
    – Gestionarea similara cu cazul mobilelor asistate prin
      suplimentarea unui efort aditional al HLR/VLR
                                                                            27
Efectul mobilitatii asupra stivei de
             protocoale
 Aplicatie
  – Aplicatii noi si adaptari
 Transport
  – Controlul congestiei si al fluxului
 Retea
  – Adresarea si rutarea
 Link
  – Accesul la mediu si trecerea de la o celula la alta
    (hand-off)
 Fizic
  – Transmisia, erorile si interferenta
                                                          28
Aplicatii mobile(1)

 Vehicule
  – Transmisia de noutati, conditii de drum, etc.
  – Retele ad-hoc cu vehicule apropiate pentru
    prevenirea accidentelor
 Urgente
  – Transmiterea rapidă la spital a datelor pacienţilor
  – Retele ad-hoc in caz de cutremure sau dezastre
    naturale
  – militare ...


                                                          29
Aplicatii mobile(2)
 Agenti de vinzari mobili
   – Acces direct la baza de date centrala cu clientii
   – Baze de date consistente pentru toţi agenţii
 Acces la Web
   – Acces la Web dinafara companiei(de pe teren)
   – Ghid turistic inteligent cu informaţii actualizate si
     dependente de locatie
 Localizarea serviciilor
   – Gasirea serviciilor in mediul local




                                                             30
Aplicatii mobile(3)

 Servicii de informare
  – Cotatii bursiere, etc.
  – Vremea

 Operatii deconectate
  – Agenti mobili, cumparaturi, etc.


 Divertisment
  – Retele ad-hoc pentru jocuri multi-utilizator
 Mesagerie

                                                   31
Aplicatii mobile in industrie


   Wireless access: (phone.com) openwave
   Alerting services: myalert.com
   Location services: (airflash) webraska.com
   Intranet applications: (imedeon) viryanet.com
   Banking services: macalla.com
   Mobile agents: tryllian.com
   ….


                                                    32
Latimea de banda si aplicatiile
            UMTS
             EDGE
   GPRS, CDMA 2000
         CDMA 2.5G
                2G
         Speed, kbps      9.6   14.4   28   64   144   384   2000

Transaction Processing
 Messaging/Text Apps
            Voice/SMS
      Location Services
 Still Image Transfers
 Internet/VPN Access
       Database Access
   Document Transfer
     Low Quality Video
    High Quality Video

                                                                    33
Evolutia retelelor celulare
 First-generation: Analog cellular systems (450-900 MHz)
   – Frequency shift keying; FDMA for spectrum sharing
   – NMT (Europe), AMPS (US)
 Second-generation: Digital cellular systems (900, 1800 MHz)
   – TDMA/CDMA for spectrum sharing; Circuit switching
   – GSM (Europe), IS-136 (US), PDC (Japan)
   – <9.6kbps data rates
 2.5G: Packet switching extensions
   – Digital: GSM to GPRS; Analog: AMPS to CDPD
   – <115kbps data rates
 3G: Full-fledged data services
   – High speed, data and Internet services
   – IMT-2000, UMTS
   – <2Mbps data rates
 4G                                                     34
GSM to GPRS
 Resursele radio sunt alocate numai pentru unul sau mai
  multe(câteva) pachete la un moment dat, aşa ca GPRS
  permite:
   – Ca mai multi utilizatori sa partajaeze resursele radio
     şi transportul eficient de pachete
   – conectivitate la reţele externe de date orientate spre
     pachete
   – Tarifarea bazata pe volumul de trafic

 Rata datelor mai mare (pana la 171 kbps in cazul ideal)
 GPRS transmite SMS-urile pe canalele de date si nu pe
  cele de semnalizare ca GSM

                                                        35
UMTS: Universal Mobile Telecomm. (standard)

 Global seamless operation in multi-cell environment
  (SAT, macro, micro, pico)
 Global roaming: multi-mode, multi-band, low-cost
  terminal, portable services & QoS

 High data rates at different mobile speeds: 144kbps at
  vehicular speed (80km/h), 384 kbps at pedestrian
  speed, and 2Mbps indoor (office/home)
 Multimedia interface to the internet
 Based on core GSM, conforms to IMT-2000
 W-CDMA as the air-interface

                                                        36
Evolution to 3G Technologies

 2G                          3G
IS-95B
                         cdma2000
CDMA

                            FDD
GSM           W-CDMA

                            TDD
           GPRS
                         EDGE & 136
                         HS outdoor

IS-136                     136 HS
              UWC-136
TDMA                       indoor
                                      37
Tehnologii fara fir

            802.11n
 >150 Mbps 802.11n



70 Mbps
                                                                               802.16(WiMax)
54 Mbps     802.11{a,b}
5-11 Mbps        802.11b                              .11 p-to-p link
1-2 Mbps
         Bluetooth
                   802.11                                               µwave p-to-p links

                                                                                4G

                                                                               3G
384 Kbps                         WCDMA, CDMA2000
                                                                               2G
56 Kbps                            IS-95, GSM, CDMA


              Interior      Exterior        Exterior          Exterior pe        Distanta
                                          pe dist medie        dist. mare         lunga

             10 – 30m       50 – 200m      200m – 4Km          5Km – 20Km       20m – 50Km




                                                                                             38
Comparatie intre tehnologii

                     Covearge
                      10
                                                             3G -HSPA
                                                             WiFi
                       8
                                                             LTE
                       6
                                                             WiMAX
                       4
    QoS                                 Data rate
                       2

                       0




          Mobility              Cost effectiveness per bit




LTE (Long Term Evolution)-4G
                                                                  39
Arhitectura retelei 3G

                                         Core Network
          Wireless
                                                                    Telephone
       Access Network
                                   Programmable                      Network
                                                     Gateway
                   Mobile Access    Softswitch
                      Router
                                                     Application
     IP Intranet                                      Server


                   Access                             (HLR)
                                   IP Intranet
      IP            Point                         User Profiles &
 Base Stations                                    Authentication
                         802.11

                                         802.11
   3G Air                                                      Wired Access
                                                   Internet
Interface
                                       Access
                                        Point
                                                                        40
Retele fara fir locale WLAN

 Advantage
  – Foarte flexibile in aria(zona) de receptie
  – Posibilitatea de realizare topologii ad-hoc
  – Legare usoara la retelele cablate
 Dezavataje
  – Banda relativ joasa comparativ cu retelele cablate
  – Multe solutii proprietar


 Topologie infrastructura sau ad-hoc (802.11)


                                                         41
Topologiile retelelor fara fir(infrastructura si
                      Adhoc)
infrastructure
 network
                                  AP: Access Point
                    AP

             AP   wired network
                                      AP




ad-hoc network




                                                         42
                                                     Source: Schiller
Difference Between Wired and
                   Wireless
  Ethernet LAN          Wireless LAN
                                                 B
   A     B       C
                                             A       C




 If both A and C sense the channel to be idle at the
  same time, they send at the same time.
 Collision can be detected at sender in Ethernet.
 Half-duplex radios in wireless cannot detect collision
  at sender.
                                                           43
Hidden Terminal Problem


             A        B       C
– A and C cannot hear each other.
– A sends to B, C cannot receive A.
– C wants to send to B, C senses a “free” medium
  (CS fails)
– Collision occurs at B.
– A cannot receive the collision (CD fails).
– A is “hidden” for C.



                                                   44
IEEE 802.11

 Acknowledgements for reliability
 Signaling packets for collision avoidance
  – RTS (request to send)
  – CTS (clear to send)
 Signaling (RTS/CTS) packets contain
  – sender address
  – receiver address
  – duration (packet size + ACK)
 Power-save mode

                                              45
Spectrum War: Status today
Enterprise 802.11   Wireless Carrier     Public 802.11
Network




                                                         46
                                       Source: Pravin Bhagwat
Spectrum War: Evolution
Enterprise 802.11   Wireless Carrier           Public 802.11
Network




                                          Market consolidation
                                          Entry of Wireless Carriers
                                          Entry of new players
                                          Footprint growth

                                                                 47
                                             Source: Pravin Bhagwat
Spectrum War: Steady State
Enterprise 802.11   Wireless Carrier          Public 802.11
Network




                     Virtual Carrier



                                          Emergence of virtual
                                           carriers
                                          Roaming agreements

                                                                  48
                                            Source: Pravin Bhagwat
Routarea si mobilitatea

 Gasirea unei cai de la o sursa la o destinatie
 Probleme
  – Schimbarea frecventa a rutelor
  – Schimbarea rutei poate fi in legatura cu miscarea
    hostului
  – Latimea de banda relativ mica a legaturilor
 Scopul protocoalelor de rutare
  – Micsorarea rutarii in ce priveste cimpurile
    aditionale(overhead)
  – Gasirea celor mai scurte rute
  – Gasirea rutelor “stabile”(despite mobility)

                                                        49
IP-ul mobil: Ideea de baza


           MN        Router
S
                       3


            Home
            agent

Router     Router
  1          2




                                  50
                              Source: Vaidya
IP mobil: ideea de baza

            miscare

                            Router
S                                         MN
                              3

                         Foreign agent

            Home agent

Router        Router      Pachetele sunt tunelate
                          utilizind IP in IP
  1             2




                                             51
                                         Source: Vaidya
Protocoalele TCP si UDP in cazul retelelor fara
                     fir
  TCP asigură:
   – Livrarea sigura si ordonata a pachetepor(utilizeaza
     retransmisiile, daca este necesar)
   – ACK-uri cumulative(un raspuns ACK-acknowledges
     pentru date primite contiguu-contiguously received data)
   – ACK-uri duplicat (ori de cite ori este receptionat un
     segment “neasteptat”-cu numar de secventa incorect-
     out-of-order)
   – Semantici cap la cap-end-to-end(receptorul trimite ACK
     dupa ce data a ajuns)
   – Implementeaza evitarea congestiei si utilizeaza
     controlul de tip fereasta de congestie- congestion
     window                                                52
TCP in retele fără fir

 Factorii ce afecteaza protocolul TCP in retele fara fir:
   – Erorile de transmisie in mediul fara fir
      • Pot cauza retransmiterea rapida- fast retransmit, ceea ce duce la
        diminuarea dimensiunii ferestrei de congestie
      • Reducerea ferestrei de congestie ca raspuns la erori nu este
        necesara
   – Rute cu multe salturi(multi-hop routes) in mediul fara fir
     partajat
      • Conexiunile “lungi”(rute cu multe hopuri) sunt mai dezavantajoase
        decit cele “scurte” pentru ca trebuie sa contina accesul la mediul
        fara fir in fiecare hop
   – Defectarea rutelor datorita mobilitatii

                                                                    53
Indirect TCP (I-TCP)
 I-TCP splits the TCP connection
    – no changes to the TCP protocol for wired hosts
    – TCP connection is split at the foreign agent
    – hosts in wired network do not notice
      characteristics of wireless part
    – no real end-to-end connection any longer

mobile host
                          access point
                          (foreign agent)   „wired“ Internet




              „wireless“ TCP                 standard TCP


                                                                    54
                                                               Source: Schiller
TCP mobil (M-TCP)

 Gestioneaza deconectari frecvente si interminabile
 M-TCP spliteaza ca si I-TCP dar,
  – Nu modifica TCP-ul pentru reteaua fixa la agentul
    strain(FA-foreign agent)
  – optimizeaza TCP pentru FA to MH
 Agentul strain(FA-Foreign Agent)
  – Monitorizeaza toate pachetele si daca detecteaza o
    deconectare atunci:
     • Seteaza fereastra emitatorului la 0
     • Emitatorul(sender) trece automat in modul repetat
  – Fara caching, fara retransmisii
                                                           55
Adaptarea aplicatiilor pentru mobilitate
 Probleme de proiectare
   Sistem transparent sau sistem netransparent/adecvat/
    care cunoaste faptul ca va lucra intr-o retea fara fir
   Aplicatie transparenta sau aplicatie netransparenta
    /adecvata/care cunoaste faptul ca va lucra intr-o retea
    fara fir
 Modele
   Model conventional de tip client/server
   Model client/proxy/server
   Mode caching/cu pre-incarcare
   Model cu agenti mobili
                                                         56
World Wide Web-ul si mobilitatea
 Caracteristicile protocolului HTTP
  – A fost proiectat pentru banda larga si intirziere mica
  – E de tip client/server, iar comunicarea este de tip
    cerere/raspuns
  – E orientat conexiune, o conexiune pe cerere
  – Utilizeaza protocolul TCP intr-un dialog in trei pasi,
    foloseste de asemenea protocolul DNS
 Caracteristicile HTML
  – Proiectat pentru calculatoare cu performante
    ridicate, afisaje color de mare definitie, mose, hard
    disk, etc.
  – De obicei paginile Web sunt optimizate pentru
    proiectare nu pentru comunicare, ignorind
    caracteristicile sistemelor clientului(end-system). 57
Sisteme suport pentru WWW mobil
  Browsere cu facilitati adaugate/sporite
    – Suport client adecvat pentru mobilitate
  Proxi
    – Client proxi: cu pre incarcare, memorare
      temporara, utilizare off-line
    – Retea proxi: transformarea adaptiva a continutului
      pentru conexiuni
    – Proxi pentru client si retea
  Servere cu facilitati sporite
    – Servere cu suport adecavat pentru mobilitate
    – Furnizarea continutului in multiple moduri in
      functie de capabilitatile clientului
  Protocoale/limbaje noi
    – WAP/WML                                          58
Modelul client/proxy/server
 Functiuni proxi atit pentru un client cit si pentru
  serverul retelei fixe
 Functiuni proxi pentru server adecvate mobilitatii
  la clientul mobil
 Proxi-ul poate fi plasat in hostul mobil(Coda), sau
  in reteaua fixa sau la ambele (WebExpress)
 Permite proiectarea de de clienti
  “slabi”(smart/thin client) in cazul unor dispozitive
  cu resurse reduse(aplicatia se lanseaza din
  browser si poate rula numai conectata si nu
  autonom fat client)
                                                  59
Proxi Web in WebExpress




    The WebExpress Intercept Model

                                        60
                                     Source: Helal
WAP(Wireless Application Protocol)
 Navigator-browser
   – “Micro browser”, similar navigatoarelor existente
 Limbajul de script
   – Similar limbajului Javascript, adaptat la dispozitivele mobile
 Poarta-Gateway
   – Transitie de la sistemele fara fir la cele cu fir
 Serverul
   – “Serverul WAP/ origine-Wap/Origin server”, similar
     serverelor Web existente
 Nivelele protocolului
   – Nivelul transport, securitate, sesiune, etc.
 Interfata cu aplicatia de telefonie
   – Functii de accces la telefonie
                                                                  61
WAP: elementele componente
             fixed network                              wireless network


             HTML               WML    WAP       Binary WML
Internet
                       filter          proxy


     HTML                       WML
                HTML
                                       filter/       Binary WML
                                       WAP
     web                        HTML   proxy
    server


                                        WTA      Binary WML
                                       server
                 PSTN


                                   Binary WML: binary file format for clients


                                                                                     62
                                                                                Source: Schiller
WAP: modelul de referinta
  Internet           A-SAP     WAP

 HTML, Java       Application Layer (WAE)               Servicii aditionale
                                                        si aplicatii
                     S-SAP
                       Session Layer (WSP)
    HTTP            TR-SAP
                          Transaction Layer (WTP)
                   SEC-SAP
  SSL/TLS                       Security Layer (WTLS)
                     T-SAP

   TCP/IP,                         Transport Layer (WDP)             WCMP
   UDP/IP,
    media                    Purtatoarele (GSM, CDPD, GPRS ...)

WAE comprises WML (Wireless Markup Language), WML Script, WTAI etc.



                                                                                   63
                                                                              Source: Schiller
Stiva de protocoale WAP
 WDP
  – Functionalitati similare cu UDP in retele IP
 WTLS
  – functionalitati similare cu SSL/TLS (optimizat pentru retele fara fir)
 WTP
  –   Clasa 0: analog cu UDP
  –   Clasa 1: analog cu TCP (fara setarea privind overhead-ul conexiunii)
  –   Clasa 2: analog cu RPC (optimizat pentru retele fara fir)
  –   features of “user acknowledgement”, “hold on”
 WSP
  – WSP/B: analog cu http 1.1 (cu facilitati de suspendare/reluare)
  – metoda: analoaga cu RPC/RMI
  – Caracteristici de invocare asincrona (confirmate/neconfirmate)
                                                                      64
Modelul cu agenti mobili
 Agentul mobil primeste cererea clientului si
 Agentul mobil se muta in reteaua fixa

 Agentul mobil actioneza la server ca si un client
 Agentul mobil realizeaza transformarile si filtrarea

 Agentul mobil se intoarce inapoi la platforma mobila
  atunci cind clientul este conectat




                                                         65
Mobile Agents: Exemplu




                         66
Cuprins
   Introducere
   Wireless LANs: IEEE 802.11
   Rutarea IP mobila
   TCP in retele fara fir
   Retele GSM
   Arhitectura retelelor GPRS
   WAP(Wireless application protocol)
   Agenti mobili(Mobile agents)
   Retele mobile si peer-to-peer(MANET-Mobile
    ad hoc networks)
                                                 67
How Wireless LANs are different

 Destination address does not equal destination
  location
 The media impact the design
  – wireless LANs intended to cover reasonable
    geographic distances must be built from basic
    coverage blocks
 Impact of handling mobile (and portable)
  stations
  – Propagation effects
  – Mobility management
  – power management

                                                    68
Wireless Media
 Physical layers in wireless networks
   – Use a medium that has neither absolute nor readily
     observable boundaries outside which stations are unable to
     receive frames
   – Are unprotected from outside signals
   – Communicate over a medium significantly less reliable than
     wired PHYs
   – Have dynamic topologies
   – Lack full connectivity and therefore the assumption normally
     made that every station (STA) can hear every other STA in
     invalid (I.e., STAs may be “hidden” from each other)
   – Have time varying and asymmetric propagation properties



                                                                69
802.11: Motivation
 Can we apply media access methods from fixed networks
 Example CSMA/CD
   – Carrier Sense Multiple Access with Collision Detection
   – send as soon as the medium is free, listen into the medium if a
     collision occurs (original method in IEEE 802.3)
 Medium access problems in wireless networks
   – signal strength decreases proportional to the square of the
     distance
   – sender would apply CS and CD, but the collisions happen at the
     receiver
   – sender may not “hear” the collision, i.e., CD does not work
   – CS might not work, e.g. if a terminal is “hidden”
 Hidden and exposed terminals
                                                                       70
Solution for Hidden/Exposed Terminals
 A first sends a Request-to-Send (RTS) to B
 On receiving RTS, B responds Clear-to-Send (CTS)
 Hidden node C overhears CTS and keeps quiet
   – Transfer duration is included in both RTS and CTS
 Exposed node overhears a RTS but not the CTS
   – D‟s transmission cannot interfere at B




          RTS                RTS
   D                A                   B                C
                             CTS              CTS
                             DATA
                                                             71
IEEE 802.11
 Wireless LAN standard defined in the unlicensed
  spectrum (2.4 GHz and 5 GHz U-NII bands)




 Standards covers the MAC sublayer and PHY layers
 Three different physical layers in the 2.4 GHz band
   – FHSS, DSSS and IR
 OFDM based PHY layer in the 5 GHz band


                                                    72
Components of IEEE 802.11
              architecture
  The basic service set (BSS) is the basic building
   block of an IEEE 802.11 LAN
  The ovals can be thought of as the coverage area
   within which member stations can directly
   communicate
  The Independent BSS (IBSS) is the simplest LAN. It
   may consist of as few as two stations
ad-hoc network       BSS1        BSS2




                                                        73
802.11 - ad-hoc network (DCF)
        802.11 LAN



STA1                                       Direct communication
       BSS1                  STA3
                                            within a limited range
                                             – Station (STA):
                                               terminal with access
          STA2
                                               mechanisms to the
                                               wireless medium
                                             – Basic Service Set (BSS):
               BSS2                            group of stations using the
                                               same radio frequency
                                   STA5

        STA4          802.11 LAN


                                                                        74
                                                                   Source: Schiller
802.11 - infrastructure network (PCF)
                                                  Station (STA)
         802.11 LAN                                – terminal with access
                                      802.x LAN
                                                     mechanisms to the wireless
                                                     medium and radio contact to
STA1                                                 the access point
        BSS1                                      Basic Service Set (BSS)
                                      Portal
                Access                             – group of stations using the
                 Point                               same radio frequency
                   Distribution System            Access Point
                          Access                   – station integrated into the
ESS                        Point                     wireless LAN and the
                                                     distribution system
                BSS2                              Portal
                                                   – bridge to other (wired)
                                                     networks
                                                  Distribution System
         STA2                            STA3
                         802.11 LAN                – interconnection network to
                                                     form one logical network (EES:
                                                     Extended Service Set) based
                                                     on several BSS             75
                                                                               Source: Schiller
Distribution System (DS) concepts
 The Distribution system interconnects multiple BSSs
 802.11 standard logically separates the wireless
  medium from the distribution system – it does not
  preclude, nor demand, that the multiple media be
  same or different
 An Access Point (AP) is a STA that provides access
  to the DS by providing DS services in addition to
  acting as a STA.
 Data moves between BSS and the DS via an AP
 The DS and BSSs allow 802.11 to create a wireless
  network of arbitrary size and complexity called the
  Extended Service Set network (ESS)

                                                    76
802.11- in the TCP/IP stack
                                                            fixed terminal
mobile terminal

                                    server

                                       infrastructure network

                                   access point


application                                           application
   TCP                                                   TCP
     IP                                                   IP
    LLC                    LLC                           LLC
802.11 MAC        802.11 MAC   802.3 MAC             802.3 MAC
802.11 PHY        802.11 PHY   802.3 PHY              802.3 PHY




                                                                    77
802.11 - Layers and functions

   MAC                                                 PLCP Physical Layer Convergence
                                                             Protocol
      – access mechanisms,
        fragmentation, encryption                             – clear channel assessment
                                                                signal (carrier sense)
   MAC Management
      – synchronization, roaming,
                                                        PMD Physical Medium Dependent
        MIB, power management                                 – modulation, coding
                                                        PHY Management



                                        Station Management
                                                              – channel selection, MIB
          LLC                                           Station Management
DLC




          MAC          MAC Management                         – coordination of all
                                                                management functions
         PLCP
PHY




                       PHY Management
          PMD

                                                                                 7.8.1 78
802.11 - Physical layer
 3 versions: 2 radio (typically 2.4 GHz), 1 IR
    – data rates 1, 2, or 11 Mbit/s
 FHSS (Frequency Hopping Spread Spectrum)
    – spreading, despreading, signal strength, typically 1 Mbit/s
    – min. 2.5 frequency hops/s (USA), two-level GFSK modulation
 DSSS (Direct Sequence Spread Spectrum)
    – DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying),
      DQPSK for 2 Mbit/s (Differential Quadrature PSK)
    – preamble and header of a frame is always transmitted with 1 Mbit/s
    – chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code)
    – max. radiated power 1 W (USA), 100 mW (EU), min. 1mW
 Infrared
    – 850-950 nm, diffuse light, typ. 10 m range
    – carrier detection, energy detection, synchonization

                                                                           79
Spread-spectrum communications




                                  80
                           Source: Intersil
DSSS Barker Code modulation




                               81
                          Source: Intersil
DSSS properties




                       82
                  Source: Intersil
802.11 - MAC layer

 Traffic services
   – Asynchronous Data Service (mandatory) – DCF
   – Time-Bounded Service (optional) - PCF


 Access methods
   – DCF CSMA/CA (mandatory)
      • collision avoidance via randomized back-off mechanism
      • ACK packet for acknowledgements (not for broadcasts)
   – DCF w/ RTS/CTS (optional)
      • avoids hidden terminal problem
   – PCF (optional)
      • access point polls terminals according to a list


                                                                83
802.11 - Carrier Sensing
 In IEEE 802.11, carrier sensing is performed
   – at the air interface (physical carrier sensing), and
   – at the MAC layer (virtual carrier sensing)
 Physical carrier sensing
   – detects presence of other users by analyzing all detected
      packets
   – Detects activity in the channel via relative signal strength
      from other sources
 Virtual carrier sensing is done by sending MPDU duration
  information in the header of RTS/CTS and data frames
 Channel is busy if either mechanisms indicate it to be
    – Duration field indicates the amount of time (in microseconds)
      required to complete frame transmission
    – Stations in the BSS use the information in the duration field to
      adjust their network allocation vector (NAV)

                                                                         84
802.11 - Reliability
 Use of acknowledgements
  – When B receives DATA from A, B sends an ACK
  – If A fails to receive an ACK, A retransmits the DATA
  – Both C and D remain quiet until ACK (to prevent collision of
    ACK)
  – Expected duration of transmission+ACK is included in
    RTS/CTS packets

          RTS                RTS
   D                A                   B                 C
                             CTS               CTS
                             DATA

                             ACK


                                                                   85
802.11 - Priorities

 defined through different inter frame spaces – mandatory idle time
  intervals between the transmission of frames
 SIFS (Short Inter Frame Spacing)
   – highest priority, for ACK, CTS, polling response
   – SIFSTime and SlotTime are fixed per PHY layer
   – (10 s and 20 s respectively in DSSS)
 PIFS (PCF IFS)
   – medium priority, for time-bounded service using PCF
   – PIFSTime = SIFSTime + SlotTime
 DIFS (DCF IFS)
   – lowest priority, for asynchronous data service
   – DCF-IFS (DIFS): DIFSTime = SIFSTime + 2xSlotTime

                                                                 86
802.11 - CSMA/CA
                                                    contention window
   DIFS                         DIFS                (randomized back-off
                                                    mechanism)

              medium busy                            next frame

                direct access if                                     t
                medium is free  DIFS         slot time


– station ready to send starts sensing the medium (Carrier Sense
  based on CCA, Clear Channel Assessment)
– if the medium is free for the duration of an Inter-Frame Space
  (IFS), the station can start sending (IFS depends on service
  type)
– if the medium is busy, the station has to wait for a free IFS, then
  the station must additionally wait a random back-off time
  (collision avoidance, multiple of slot-time)
– if another station occupies the medium during the back-off time
  of the station, the back-off timer stops (fairness)
                                                                    87
802.11 –CSMA/CA example
             DIFS           DIFS                DIFS                  DIFS
                                   boe   bor            boe bor              boe   busy
station1

                                   boe   busy
station2

                     busy
station3

                                                        boe busy             boe bor
station4

                                   boe bor              boe    busy          boe   bor
station5
                                                                                          t

           busy     medium not idle (frame, ack etc.)         boe elapsed backoff time

                    packet arrival at MAC                     bor residual backoff time



                                                                                              88
802.11 - Collision Avoidance
 Collision avoidance: Once channel becomes idle, the
  node waits for a randomly chosen duration before
  attempting to transmit
 DCF
   – When transmitting a packet, choose a backoff interval in the
     range [0,cw]; cw is contention window
   – Count down the backoff interval when medium is idle
   – Count-down is suspended if medium becomes busy
   – When backoff interval reaches 0, transmit RTS
 Time spent counting down backoff intervals is part of
  MAC overhead



                                                               89
DCF Example


  B1 = 25              B1 = 5
              wait               data


             data                   wait
  B2 = 20              B2 = 15             B2 = 10

               B1 and B2 are backoff intervals
cw = 31        at nodes 1 and 2



                                                 90
802.11 - Congestion Control

 Contention window (cw) in DCF: Congestion
  control achieved by dynamically choosing cw
 large cw leads to larger backoff intervals
 small cw leads to larger number of collisions

 Binary Exponential Backoff in DCF:
  – When a node fails to receive CTS in response to
    its RTS, it increases the contention window
     • cw is doubled (up to a bound CWmax)
  – Upon successful completion data transfer, restore
    cw to CWmin
                                                      91
802.11 - CSMA/CA II
  station has to wait for DIFS before sending data
  receivers acknowledge at once (after waiting for SIFS) if the
   packet was received correctly (CRC)
  automatic retransmission of data packets in case of
   transmission errors


             DIFS
                         data
sender
                                    SIFS
                                           ACK
receiver
                                                 DIFS
other                                                    data
stations                                                           t
                            waiting time    contention



                                                                       92
802.11 –RTS/CTS
   station can send RTS with reservation parameter after waiting for DIFS
    (reservation determines amount of time the data packet needs the medium)
   acknowledgement via CTS after SIFS by receiver (if ready to receive)
   sender can now send data at once, acknowledgement via ACK
   other stations store medium reservations distributed via RTS and CTS


           DIFS
                  RTS                     data
sender
                        SIFS                     SIFS
                               CTS SIFS                 ACK
receiver


                                   NAV (RTS)                  DIFS
other                                   NAV (CTS)                    data
stations                                                                    t
                                    defer access        contention


                                                                                93
Fragmentation


           DIFS
                  RTS                     frag1                      frag2
sender
                        SIFS                      SIFS                       SIFS
                               CTS SIFS                  ACK1 SIFS                  ACK2
receiver

                                   NAV (RTS)
                                        NAV (CTS)
                                                             NAV (frag1)                   DIFS
other                                                             NAV (ACK1)                      data
stations                                                                                               t
                                                                                    contention




                                                                                                  94
802.11 - Point Coordination Function




                                   95
802.11 - PCF I


              t0 t1
                                       SuperFrame

  medium busy PIFS                     SIFS                     SIFS
                      D1                       D2
point
coordinator                SIFS                     SIFS
                                  U1                       U2
wireless
stations
stations„                                NAV
NAV




                                                                       96
802.11 - PCF II

                                                        t2   t3           t4

                   PIFS                      SIFS
              D3          D4                        CFend
point
coordinator                    SIFS
                                        U4
wireless
stations
stations„                         NAV
NAV                 contention free period                   contention        t
                                                             period




                                                                                   97
CFP structure and Timing




                           98
PCF- Data transmission




                         99
Polling Mechanisms

 With DCF, there is no mechanism to guarantee
  minimum delay for time-bound services
 PCF wastes bandwidth (control overhead) when
  network load is light, but delays are bounded
 With Round Robin (RR) polling, 11% of time was
  used for polling
 This values drops to 4 % when optimized polling is
  used
 Implicit signaling mechanism for STAs to indicate
  when they have data to send improves performance


                                                   100
Coexistence of PCF and DCF
 PC controls frame transfers during a Contention Free
  Period (CFP).
   – CF-Poll control frame is used by the PC to invite a station to
     send data
   – CF-End is used to signal the end of the CFP
 The CFP alternates with a CP, when DCF controls
  frame transfers
   – The CP must be large enough to send at least one
     maximum-sized MPDU including RTS/CTS/ACK
 CFPs are generated at the CFP repetition rate and
  each CFP begins with a beacon frame


                                                                 101
802.11 - Frame format
         Types
           – control frames, management frames, data frames
         Sequence numbers
           – important against duplicated frames due to lost ACKs
         Addresses
           – receiver, transmitter (physical), BSS identifier, sender (logical)
         Miscellaneous
           – sending time, checksum, frame control, data
bytes  2         2        6       6       6        2       6      0-2312    4
    Frame     Duration Address Address Address Sequence Address
                                                                   Data    CRC
    Control     ID        1       2       3     Control    4


              version, type, fragmentation, security, ...



                                                                           102
Frame Control Field




                      103
Types of Frames

 Control Frames
  – RTS/CTS/ACK
  – CF-Poll/CF-End
 Management Frames
  –   Beacons
  –   Probe Request/Response
  –   Association Request/Response
  –   Dissociation/Reassociation
  –   Authentication/Deauthentication
  –   ATIM
 Data Frames

                                        104
MAC address format
scenario              to DS from     address 1 address 2 address 3 address 4
                            DS
ad-hoc network           0     0            DA    SA       BSSID       -
infrastructure           0     1            DA   BSSID      SA         -
network, from AP
infrastructure          1      0       BSSID      SA        DA         -
network, to AP
infrastructure          1      1            RA    TA        DA        SA
network, within DS


      DS: Distribution System
      AP: Access Point
      DA: Destination Address
      SA: Source Address
      BSSID: Basic Service Set Identifier
      RA: Receiver Address
      TA: Transmitter Address



                                                                       105
802.11 - MAC management
 Synchronization
   – try to find a LAN, try to stay within a LAN
   – timer etc.
 Power management
   – sleep-mode without missing a message
   – periodic sleep, frame buffering, traffic measurements
 Association/Reassociation
   – integration into a LAN
   – roaming, i.e. change networks by changing access points
   – scanning, i.e. active search for a network
 MIB - Management Information Base
   – managing, read, write

                                                               106
802.11 - Synchronization

 All STAs within a BSS are synchronized to a common
  clock
   – PCF mode: AP is the timing master
      • periodically transmits Beacon frames containing Timing
        Synchronization function (TSF)
      • Receiving stations accepts the timestamp value in TSF
   – DCF mode: TSF implements a distributed algorithm
      • Each station adopts the timing received from any beacon that has
        TSF value later than its own TSF timer
 This mechanism keeps the synchronization of the TSF
  timers in a BSS to within 4 s plus the maximum
  propagation delay of the PHY layer

                                                                     107
Synchronization using a Beacon
          (infrastructure)


         beacon interval


         B                     B               B                   B
access
point
               busy     busy          busy                  busy
medium
                                                                       t
             value of the timestamp    B     beacon frame




                                                                           108
Synchronization using a Beacon (ad-
                  hoc)

           beacon interval



           B1                                                     B1
station1

                               B2             B2
station2

                busy    busy         busy                  busy
medium
                                                                       t
            value of the timestamp    B     beacon frame   random delay




                                                                           109
802.11 - Power management
 Idea: switch the transceiver off if not needed
   – States of a station: sleep and awake
 Timing Synchronization Function (TSF)
   – stations wake up at the same time
 Infrastructure
   – Traffic Indication Map (TIM)
       • list of unicast receivers transmitted by AP
   – Delivery Traffic Indication Map (DTIM)
       • list of broadcast/multicast receivers transmitted by AP
 Ad-hoc
   – Ad-hoc Traffic Indication Map (ATIM)
       • announcement of receivers by stations buffering frames
       • more complicated - no central AP
       • collision of ATIMs possible (scalability?)


                                                                   110
802.11 - Energy conservation


 Power Saving in IEEE 802.11 (Infrastructure
  Mode)
  – An Access Point periodically transmits a beacon
    indicating which nodes have packets waiting for them
  – Each power saving (PS) node wakes up periodically
    to receive the beacon
  – If a node has a packet waiting, then it sends a PS-
    Poll
     • After waiting for a backoff interval in [0,CWmin]
  – Access Point sends the data in response to PS-poll

                                                           111
Power saving with wake-up patterns
         (infrastructure)
          TIM interval          DTIM interval


          D B                   T               T       d                D B
access
point
                 busy    busy           busy                      busy
medium

                                                    p       d
station
                                                                                t
           T    TIM      D   DTIM               awake

           B    broadcast/multicast    p PS poll        d data transmission
                                                          to/from the station




                                                                                    112
Power saving with wake-up patterns
             (ad-hoc)
               ATIM
               window          beacon interval


               B1                                     A       D        B1
station1


                                 B2              B2       a       d
station2


                                                                                 t
   B   beacon frame      random delay        A transmit ATIM          D transmit data

       awake            a acknowledge ATIM   d acknowledge data




                                                                                     113
802.11 - Roaming
 No or bad connection in PCF mode? Then perform:
 Scanning
   – scan the environment, i.e., listen into the medium for beacon
     signals or send probes into the medium and wait for an
     answer
 Reassociation Request
   – station sends a request to one or several AP(s)
 Reassociation Response
   – success: AP has answered, station can now participate
   – failure: continue scanning
 AP accepts Reassociation Request
   – signal the new station to the distribution system
   – the distribution system updates its data base (i.e., location
     information)
   – typically, the distribution system now informs the old AP so it
     can release resources                                         114
Hardware
 Original WaveLAN card (NCR)
   –   914 MHz Radio Frequency
   –   Transmit power 281.8 mW
   –   Transmission Range ~250 m (outdoors) at 2Mbps
   –   SNRT 10 dB (capture)
 WaveLAN II (Lucent)
   – 2.4 GHz radio frequency range
   – Transmit Power 30mW
   – Transmission range 376 m (outdoors) at 2 Mbps (60m
     indoors)
   – Receive Threshold = –81dBm
   – Carrier Sense Threshold = -111dBm


                                                          115
802.11 current status

   802.11i                                 LLC
   security
                                           WEP              MAC
        802.11f                          MAC                Mgmt
Inter Access Point Protocol


                        802.11e                                      MIB
                  QoS enhancements
                                                PHY
                                       DSSS       FH   IR


                                                              OFDM
                                      802.11b
                                      5,11 Mbps
                                                              802.11a
                                                             6,9,12,18,24
                                      802.11g               36,48,54 Mbps
                                      20+ Mbps


                                                                            116
IEEE 802.11 Summary

 Infrastructure (PCF) and adhoc (DCF) modes

 Signaling packets for collision avoidance
   – Medium is reserved for the duration of the transmission
   – Beacons in PCF
   – RTS-CTS in DCF

 Acknowledgements for reliability
 Binary exponential backoff for congestion control
 Power save mode for energy conservation

                                                               117
Cuprins
   Introducere
   Wireless LANs: IEEE 802.11
   Rutarea IP mobila
   TCP in retele fara fir
   Retele GSM
   Arhitectura retelelor GPRS
   WAP(Wireless application protocol)
   Agenti mobili(Mobile agents)
   Retele mobile si peer-to-peer(MANET-Mobile
    ad hoc networks)
                                             118
Rutarea traditională
 Un protocol de rutare populeaza tabela de
  rutare a unui router




 Un protocol de rutare se bazeaza pe
  algoritmii Distance-Vector sau Link-State   119
Routarea si mobilitatea

 Gasirea unei cai de la o sursa la o destinatie
 Probleme
  – Schimbarea frecventa a rutelor
  – Schimbarea rutei poate fi in legatura cu miscarea
    hostului
  – Latimea de banda relativ mica a legaturilor
 Scopul protocoalelor de rutare
  – Micsorarea rutarii in ce priveste cimpurile
    aditionale(overhead)
  – Gasirea celor mai scurte rute
  – Gasirea rutelor “stabile”(despite mobility)

                                                    120
IP mobil (RFC 3220): motivarea
 Rutarea traditionala
   – Bazata pe adrese IP; prefixul retelei determina subreteaua
   – Schimbarea fizica a subretelei implica
       • Schimbarea adresei IP (dupa noua subretea), sau
       • O tabela de rutare cu intrari speciale pentru transmitrea
         pacheteor la noua subretea
 Schimbarea adeselor IP
   – Actualizarea DNS necesita un timp mare
   – Conexiunile TCP se opresc
 Schimbarea intrarilor in tabelele de rutare
   – Nu exista o evidenta cu numarul hosturilor mobile si
     schimbarile frecvente a locatiilor lor
   – Probleme de securitate
 Cerintele solutiei
   – Folosirea aceleiasi adrese IP, utilizarea acelorasi protocoale
   – Autentificarea mesajelor, …                                 121
IP-ul mobil: Ideea de baza


            MN(mobile   Router
S(sender)    Node)        3


                Home
                agent

   Router     Router
     1          2




                                    122
                                 Source: Vaidya
IP mobil: ideea de baza

            miscare

                            Router
S                                         MN
                              3

                         Foreign agent

            Home agent

Router        Router      Pachetele sunt tunelate
                          utilizind IP in IP
  1             2




                                            123
                                         Source: Vaidya
IP mobil : terminologia
 Nod Mobil(Mobile Node-MN)
    – Nod care se muta prin retea fara a-si schimba adresa IP
 Agent de acasa/local(Home Agent-HA)
    – Host din reteaua de-acasa/proprie a nodului mobil( MN), de obicei
      un router
    – Inregistreaza locatia nodului MN, tuneleaza pachetele IP la COA
 Agent strain( Foreign Agent -FA)
    – Host din reteaua curenta/straina, unde se gaseste momentan MN,
      de obicei un router
    – Forwardeaza pachetele tunelate la MN, de obicei ruterul implicit al
      lui MN din reteaua de acasa/proprie
 “Ingrijitorul/gestionarul” de adrese(Care-of Address -COA)
    – Adreseaza punctele de capat ale tunelului curent( tunnel end-
      point) de la MN( la FA sau MN)
    – Acualizeaza locatia MN-ului din punctul de vedere al IP
 Nodul corespondent(Correspondent Node (CN)
    – Hostul cu care MN doreste sa “corespondeze” ( conexiunea TCP )
                                                                       124
Transferul datelor la sistemul mobil
             HA
                      2
                                                                          MN



Reteaua proprie                                 3                  Receptor
(home network)            Internet                                 (receiver)

                                                          FA    foreign
                                                                network




                  1                  1. Emitatorul trimite la adresa IP a nodului
 CN                                      mobil MN, iar HA intercepteaza
                                         pachetele (proxy ARP)
                                     2. HA tuneleaza pachetele la COA, aici FA,
      Emitator(sender)
                                        prin incapsulare
                                     3. FA trimite pachetele mai departe la MN
                                                                       125
                                                                   Soursa: Schiller
Transferul datelor de la sistemul mobil
             Agent propriu
             HA-home agent                                        1      MN



Retea proprie                                                     Emitator
(home network)             Internet                               (sender)

                                                        FA     Retea straina
                                                               (foreign
                                                               network)


                                      1. Emitatorul trimite la adresa IP a
 CN                                      a receptorului;de obicei FA
                                         lucreaza ca si un router implicit
      Receptor(receiver)

                                                                      126
                                                                  Source: Schiller
IP-ul mobil: Operatia de bază
 Agentul de averizare
   – Periodic HA/FA trimit messaje de avertizare in subreteaua lor
     fizica
   – MN asculta mesajele si detecteaza daca acestea sunt din
     reteaua proprie sau straină
   – MN citeste o/un COA din mesajele de averizare a FA
 Inregistrarea MN
   – MN semnaleaza COA la HA prin FA
   – HA raspundela MN prin FA
   – Timpul de viata este limitat, necesar sa fie securizat dupa
     autentificare
 Proxi-ul HA
   – HA avertizeaza asupra adresei IP a lui MN (ca si pentru
     sistemele fixe)
   – Pachetele pentru MN sunt trimise la HA
   – Schimbari in COA/FA
 Tunelarea pachetelor
   – HA la MN prin FA                                              127
Agentul de averizare
0           7 8              15 16       23 24      31
   type            code                checksum
#addresses       addr. size             lifetime
                    router address 1
                   preference level 1
                    router address 2
                   preference level 2
                             ...

     type           length         sequence number
    registration lifetime      R B H F M G V reserved
                             COA 1
                             COA 2
                             ...




                                                         128
Inregistrarea(registration)
    MN      FA    HA         MN   HA




                         t




t




                                       129
Cererea de inregistrare(Registration request)

       0          7 8        15 16          23 24     31
           type    S B DMG V rsv           lifetime
                         home address
                          home agent
                              COA
                         identification

                        extensions . . .




                                                           130
Incapsularea IP-in-IP
 Incapsularea IP-in-IP- (obligatorie in RFC 2003)
   – tunel intre HA si COA



          ver.   IHL         TOS                length
              IP identification       flags   fragment offset
             TTL           IP-in-IP         IP checksum
                             IP address of HA
                          Care-of address COA
          ver. IHL           TOS                length
              IP identification       flags   fragment offset
             TTL         lay. 4 prot.       IP checksum
                             IP address of CN
                             IP address of MN
                         TCP/UDP/ ... payload



                                                                131
IP-ul mobil: Alte probleme
 Tunelarea inversa
  – Firewall-urile permit numai adresari topologice
    “topological correct“
  – Un pachet de la MN incapsulat de FA este corect din
    punct de vedere topologic(topological correct)


 Optimizari
  – Rutarea triunghiulara
     • HA informeaza emitatorul privitor la locatia curenta a lui MN
  – Schimbarea lui FA
     • noul FA informeaza vechiul FA sa evite pachetul pierdut, iar
       vechiul FA forvardeaza pachetele ramase la noul FA.
                                                               132
IP-ul mobil -recapitulare
 Nodul mobil se muta la noua locatie
 Agent de avertisment de agentul strain
 Inregistrarea nodului mobil cu agentul de acasa
 Realizarea proxi-ului de agentul de-acasa
  pentru nodul mobil
 Incapsularea pachetelor
 Tunnelarea agentului de-acasa la nodul mobil
  prin nodul strain

 Tunelarea inversa
 Optimizarea pentru rutarea triunghiulara(in
  bucla)                                        133
Cuprins
   Introducere
   Wireless LANs: IEEE 802.11
   Rutarea IP mobila
   TCP in retele fara fir
   Retele GSM
   Arhitectura retelelor GPRS
   WAP(Wireless application protocol)
   Agenti mobili(Mobile agents)
   Retele mobile si peer-to-peer(MANET-Mobile
    ad hoc networks)
                                             134
Transmission Control Protocol (TCP)
 Livrarea sigura si ordonata
  – Prin pachete de raspuns si retransmisii
 Dialog de lucru cap la cap(end-to-end
  semantics)
  – Raspunsurile trimise la emitator confirma livrarea
    datelor primite de receptor
  – Ack este trimis numai dupa ce data a ajuns la
    receptor
  – Ack cumulativ(pentru mai multe segmente)
 Implementeaza evitarea congestiei si controlul
  de flux

                                                         135
Controlul fluxului bazat pe ferestre

 Protocolul de transmisie cu fereastră glisantă
 Dimensiunea ferestrei este minimul din
  – Fereastra de averizare a receptorului- determinata
    de spatiul disponibil in bufferul(memoria tampon) a
    receptorului
  – Fereastra de congestie – determinata de emitator
    pe baza reactiei retelei
                  Fereastra emitatorului

         1 2 3 4 5 6 7 8 9 10 11 12 13


      Ack-urile primite            Ne transmise

                                                     136
Comportamentul de baza TCP
                         14                       Evitarea congestiei
Congestion Window size



                         12
                         10
     (segments)




                         8                                             Nivelul startului
                         6Startul incet                                incet

                         4
                         2
                         0
                              0    1      2      3    4    5       6   7     8
                                              Time (round trips)


                          Exemplul presupune ca ACK-urile nu sunt intirziate
                                                                                           137
TCP: detectarea pachetelor pierdute


 Timeout-ul de retransmisie
  – Initiaza startul incet


 Raspunsuri duplicate
  – Initiaza retransmiterea rapida


 Presupunerea ca toate pachetele sunt pierdute
  datorita congestiei

                                             138
TCP dupa timeout
                                                                   Dupa timeout
                                                  Fereastra de
Congestion window (segments)

                               25                 congestie(cwnd) =20
                               20

                               15

                               10
                                                                          Nivelul startului
                                    Nivelul startului incet
                               5                                        Incet ssthresh = 10
                                        ssthresh = 8
                               0                      12

                                                              15

                                                                   20

                                                                          22

                                                                                25
                                0

                                    3

                                          6

                                                 9




                                                   Time (round trips)


                                                                                        139
TCP dupa retransmisia rapida
                                                  Dupa recuperarea rapida

                         10
Window size (segments)




                                                                Fereastra initiata de receptor
                         8
                         6
                         4
                         2
                         0
                               0   2   4      6     8     10 12 14
                                           Time (round trips)

               Dupa retransmisia rapida si recuperarea rapida
               dimensiunea ferestrei este redusa la jumatate.
                                                                                          140
Impactul erorilor de transmisie

 Canalele fara fir pot avea erori aleatoare in
  avalansa
 Erorile in avalansa pot cauza timeout
 Erorile aleatoare pot cauza retransmisii rapide
 TCP nu poate face distinctia intre pachetele
  pierdute datorita congestiei si cele pierdute
  datorita erorilor de transmisie
 Nu totdeauna este necesara reducerea ferestrei
  de congestie la erori (multe fiind datorate inrautatirii
  transmisiei prin mediu)

                                                       141
Splitarea conexiunii
 Conexiunea TCP capat la capat(end-to-end) este
  Impartita/”sparta” intr-o conexiune pe partea
  cablata a rutei si una pe partea fara fir a rutei
 Conexiunea intre hostul fara fir MH si hostul fix FH
  trece prin statia de baza BS
 FH-MH = FH-BS + BS-MH

           FH         BS            MH

    Host fix      Statia de baza   Hostul mobil



                                                  142
I-TCP: Consideratii privind splitarea
            conexiunii
                                          Starea conexiunii prin-TCP

         Conexiunea TCP          Conexiunea TCP


  application             application              application
                                            rxmt
  transport               transport                transport
  network                 network                  network
  link                    link                     link
  physical                physical                 physical




                                        Fara fir(wireless)       143
Protocolul snoop
 Pachetele de date sunt memorate(bufferate) in statia se
  baza BS
   – Se permite astfel nivelului legatura de date retransmisia
     lor
 Cind raspunsurile duplicat sunt primite de BS de la MH
   – Se retransmit pe legatura fara fir, daca pachetul este
     prezent in buffer
   – Se arunca raspunsul duplicat(drop dupack)
 Se previne retransmisia rapida TCP de emitatorul FH(fix
  host)
         FH           BS            MH


                                                        144
Protocol snoop

                                  Starea conexiunii prin TCP

                 TCP connection

application       application              application
transport         transport                transport
network           network                  network
                                    rxmt
link              link                     link
physical          physical                 physical



       FH                BS                       MH
                                wireless
                                                         145
Impactul trecerii de la un nod la altul( la alt BS)(Hand-offs)

 Splitarea conexiunii
    – Starea “hard” a conex. din statia de baza trebuie sa fie mutata la
      noua statie de baza
 Protocolul Snoop
    – Starea “soft” a conex. nu e nevoie sa fie mutata
    – In timp ce noua statie de baza construieste noua stare, pachetele
      pierdute nu pot fi recuperate local


 Trecerile frcvente de la un nod la altul constituie o
  problema pentru schemele care realizeaza o cantitate
  semnificativa a starilor de conexiune la statiile de baza
    – Starea” hard” a conex. nu se pierde
    – Starea “soft” a conex. tebuie sa fie recreata pentru a obtine o
      performanta buna

                                                                    146
M-TCP(mobile TCP)
 Similar cu splitarea conexiunii, M-TCP spliteaza o
  conexiune TCP in doua parti logice
   – Cele doua parti au control de flux independent ca si
      in I-TCP
 BS nu trimite un ACK la MH, pina cind BS a primit un
  ACK de la MH
   – Pastreaza semanticile(modul de lucru) capat la capat
 BS cu mentinerea ack pentru ACK-ul ultimului octet al
  lui MH(?)
               Ack 999        Ack 1000

          FH             BS              MH


                                                      147
M-TCP

 Cind este receptionat un nou ACK impreuna cu
  un avertisment al receptorului de tipul
  Window=0, emitatorul intra in modul “continuare”
 Emitatorul nu trimite nici o data in modul
   – Cu exceptia cazului in care modul “continuare” este
     anulat
 Cind este primit un avertisment de tip fereastra
  pozitiva, emitatorul iese din modul “continuare”
 La iesirea din modul “continuare” , valorile pentru
  RTO si cwnd sunt aceleasi ca si inaintea modului
  “continuare”
                                                      148
BlocareaTCP
 M-TCP are nevoie de ajutor de la statia de
  baza(base station)
  – Statia de baza mentine ack pentru un octet(?)
  – Statia de baza utilizeaza acest ack sa trimita o
    fereastra de avertisment egala cu zero cind un host
    mobil se muta la alta celula
 Blocarea TCP cere receptorului sa trimita o
  fereastra de avertizare egala cu zero (ZWA)
                                       Mobile
                                     TCP receiver

      FH                BS                MH

                                                     149
TCP in medii fara fir-recapitulare
 Presupunerea ca pachetele pierdute implica o
  congestie nu este adevarata in mediile fara fir
 Nu este adecvata invocarea controlului
  congestiei ca raspuns la pachetele pierdute

 Citeava propuneri de adaptare a TCP in mediile
  fara fir
 Modificări la:
  – Nodul fix(FH)
  – Statia de baza(BS)
  – Nodul mobil(MH)
                                               150
Cuprins
   Introducere
   Wireless LANs: IEEE 802.11
   Rutarea IP mobila
   TCP in retele fara fir
   Retele GSM
   Arhitectura retelelor GPRS
   WAP(Wireless application protocol)
   Agenti mobili(Mobile agents)
   Retele mobile si peer-to-peer(MANET-Mobile
    ad hoc networks)
                                             151
GSM: Arhitectura




PSTN-Public Switched Telephone Network,
ISDN-Integrated Services Digital Network,
 PDN-Packet Data Network                      152
Base Transceiver Station (BTS)
 Una pe celula
 E compusa dintr-un transmitator si un receptor de mare
   viteza
 Functiile statiei BTS
  – Are doua canale
          Un canal de semnalizare si unul pentru date(Signalling
          and Data Channel)
          Programarea mesajelor
          Detectarea accesului aleatoriu
  – Realizeaza codificarea pentru protectia la erori a
    canalului radio
    •   Adaptarea vitezei in functie de erori, conditii de propagare,
        etc.
 Identificarea BTS prin codul de identitate (BtS Identity
                                                          153
  Code-BSIC)
Base Station Controller (BSC)
 Controleaza mai multe BTS-uri
 Consta dintr-o entitatea de control si din una
  pentru un protocol inteligent
 Functiile BSC
 – Asigura managementul resursei radio
     –   Asigneaza si elibereaza frecvente si sloturi de timp pentru
         toate MS-urile din aria sa de acivitate/actiune
     –   Realocarea de frecvente pentru toate celulele
     –   Realizeaza protocolul de predare primire a unei MS
 – Semnale de sincronizare a timpului si frecventei la
   BTS-uri
 – Masurarea timpului de intirziere si notificarea unui
   MS la BTS
 – Mangementul puterii la BTS si MS                    154
Mobile Switching Center (MSC)

 Comuta nodul la un PLMN(Public/Private
  Land Mobile Network)
 Aloca resursa radio (RR)
 – Realizeaza primirea predarea unei MS ublic
 Mobilitatea subscrierii
 – Inregistrarea locatiei de subscriere
 Pot fi citeva MSC pentru un PLMN




                                                155
Gateway MSC (GMSC)


 Conecteaza reteaua mobila la reteaua fixa
 – Punct de intrare la un PLMN
 Usual unul pentru PLMN
 Cere informatia de rutare de la HLR si ruteaza
  conexiunea la MSC-ul local




                                              156
Canalul fizic
 Legatura ascendenta/descendenta
  (Uplink/Downlink) la 25MHz
 – 890 -915 MHz pentru legatura ascendenta
 – 935 - 960 MHz pentru legatura descendenta
 Combinatie de FDMA si TDMA
 – FDMA
     –    124 canale a 200 kHz
     –    200 kHz banda de garda
 – TDMA
     –    Sit de biti/Avalansa(Burst)
 Modulatia utilizata
         Gaussian Minimum Shift Keying (GMSK)

                                                157
158
Bursts


 Building unit of physical channel

 Types of bursts
 –   Normal
 –   Synchronization
 –   Frequency Correction
 –   Dummy
 –   Access


                                      159
Normal Burst


 Normal Burst
 – 2*(3 head bit + 57 data bits + 1 signaling bit) + 26
   training sequence bit + 8.25 guard bit

 – Used for all except RACH, FSCH & SCH




                                                          160
Air Interface: Logical Channel
 Traffic Channel (TCH)

 Signaling Channel
 – Broadcast Channel (BCH)
 – Common Control Channel (CCH)
 – Dedicated/Associated Control Channel
   (DCCH/ACCH)




                                          161
162
Traffic Channel

 Transfer either encoded speech or user data
 Bidirectional

 Full Rate TCH
 – Rate 22.4kbps
 – Bm interface


 Half Rate TCH
 – Rate 11.2 kbps
 – Lm interface

                                                163
Full Rate Speech Coding
 Speech Coding for 20ms segments
 – 260 bits at the output
 – Effective data rate 13kbps
 Unequal error protection
 – 182 bits are protected
   •   50 + 132 bits = 182 bits
 – 78 bits unprotected
 Channel Encoding
 – Codes 260 bits into (8 x 57 bit blocks) 456 bits
 Interleaving
 – 2 blocks of different set interleaved on a normal
   burst (save damages by error bursts)
                                                       164
Speech               20 ms                                20 ms

                      Speech Coder                            Speech Coder


                             260                                      260


                     Channel Encoding                     Channel Encoding
                        456 bit                                   456 bit




                                           Interleaving



                       1      2    3       4   5    6     7       8

                                   NORMAL BURST
               3       57              1       26         1           57     3    8.25
Out of first 20 ms                                                                         165
                                                                             Out of second 20ms
Traffic Channel Structure for Full Rate
  Coding
Slots 1   2   3   4   5   6   7   8   1   2   3   4   5   6   7   8   1     2




                              Bursts for Users allocated in Slot
   1 2    3   4   5   6   7   8   9 10 11 12 13 14 15 16 17                 26
                                  T
   T   T T    T T     T T T       T T T T S T T T T                         I

          T = Traffic
          S = Signal( contains information about the signal
          strength in neighboring cells)



                                                                      166
Slots 1    2   3   4   5   6       7   8   1   2   3   4   5   6   7   8   1   2




                           Burst for one users
   1 2     3   4   5   6   7       8   9 10 11 12 13 14 15 16 17               26
   T       T       T           T       T    T     S     T     T

       Bursts for another users allocated in alternate
                            T
   1 2 Slots4 5 6 T
         3           7 8 9 10 11 12 13 14 15 16 17                             26
       T       T       T           T       T       T       T       T           S
                           =
                                       T
  Traffic Channel Structure for Half Rate
  Coding                                 167
BCCH


 Broadcast Control Channel (BCCH)
 – BTS to MS
 – Radio channel configuration
     –   Current cell + Neighbouring cells
 – Synchronizing information
     –   Frequencies + frame numbering
 – Registration Identifiers
     –   LA + Cell Identification (CI) + Base Station Identity Code
         (BSIC)



                                                                 168
FCCH & SCH

  Frequency Correction Channel
    – Repeated broadcast of FB

  Synchronization Channel
    – Repeated broadcast of SB
    – Message format of SCH
PLMN color       BS color   T1 Superframe   T2 multiframe   T3 block frame
3 bits           3 bits     index 11 bits   index 11 bits   index 3bits
        BSIC 6 bits"
                                                FN 19bits




                                                                             169
RACH & SDCCH


 Random Access Channel (RACH)
 – MS to BTS
 – Slotted Aloha
 – Request for dedicated SDCCH

 Standalone Dedicated Control Channel
  (SDCCH)
 – MS  BTS
 – Standalone; Independent of TCH


                                         170
AGCH & PCH


  Access Grant Channel (AGCH)
 – BTS to MS
 – Assign an SDCCH/TCH to MS


 Paging Channel (PCH)
 – BTS to MS
 – Page MS



                                171
SACCH & FACCH
 Slow Associated Control Channel (SACCH)
 – MS  BTS
 – Always associated with either TCH or SDCCH
 – Information
     –   Optimal radio operation; Commands for synchronization
     –   Transmitter power control; Channel measurement
 – Should always be active; as proof of existence of
   physical radio connection
 Fast Associated Control Channel (FACCH)
 – MS  BTS
     –   Handover
     –   Pre-emptive multiplexing on a TCH, Stealing Flag (SF)


                                                                 172
Example: Incoming Call Setup
MS  BSS/MSC   ------   Paging request            (PCH)
MS  BSS/MSC   ------   Channel request           (RACH)
MS  BSS/MSC   ------   Immediate Assignment      (AGCH)
MS  BSS/MSC   ------   Paging Response           (SDCCH)
MS  BSS/MSC   ------   Authentication Request    (SDCCH)
MS  BSS/MSC   ------   Authentication Response   (SDCCH)
MS  BSS/MSC   ------   Cipher Mode Command       (SDCCH)
MS  BSS/MSC   ------   Cipher Mode Compl.        (SDCCH)
MS  BSS/MSC   ------   Setup                     (SDCCH)
MS  BSS/MSC   ------   Call Confirmation         (SDCCH)
MS  BSS/MSC   ------   Assignment Command        (SDCCH)
MS  BSS/MSC   ------   Assignment Compl.         (FACCH)
MS  BSS/MSC   ------   Alert                     (FACCH)
MS  BSS/MSC   ------   Connect                   (FACCH)
MS  BSS/MSC   ------   Connect Acknowledge       (FACCH)
MS BSS/MSC    ------   Data                      (TCH)

                                                            173
Select the channel with
Power On          Scan Channels,             highest RF level among
                  monitor RF levels          the control channels


                                                  Scan the channel for the
                                                  FCCH

           Select the channel with      NO
           next highest Rf level                        Is
           from                                   FCCH detected?
           the control list.                                    YES

                                                Scan channel for SCH


                                   NO
                                                        Is
                                                   SCH detected?
                                                                        YES


                                               Read data from BCCH
                                               and determine is it BCCH?


           From the channel data      NO                  Is
           update the control                     the current BCCH
           channel list                           channel included?     YES


                                                  Camp on BCCH and
                                                  start decoding              174
Adaptive Frame Synchronization


 Timing Advance
 Advance in Tx time corresponding to
  propagation delay

 6 bit number used; hence 63 steps
 63 bit period = 233 micro seconds (round trip
  time)
 – 35 Kms

                                              175
176
GSM: Channel Mapping Summary
 Logical channels
 –   Traffic Channels; Control Channels
 Physical Channel
 –   Time Slot Number; TDMA frame; RF Channel Sequence


 Mapping in frequency
 –   124 channels, 200KHz spacing
 Mapping in time
 –   TDMA Frame, Multi Frame, Super Frame, Channel
 –   Two kinds of multiframe:
      –   26-frame multiframe; usage -Speech and Data
      –   51-frame multiframe; usage -Signalling


                                                         177
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications
Mobile Network Architecture and Applications

More Related Content

What's hot

Analysis of Multicast Routing Protocols: Puma and Odmrp
Analysis of Multicast Routing Protocols: Puma and OdmrpAnalysis of Multicast Routing Protocols: Puma and Odmrp
Analysis of Multicast Routing Protocols: Puma and OdmrpIJMER
 
Overview gsm,gprs& umts
Overview gsm,gprs& umtsOverview gsm,gprs& umts
Overview gsm,gprs& umtsaibad ahmed
 
Performance Evaluation of QoS parameters in UMTS Network Using Qualnet
Performance Evaluation of QoS parameters in UMTS Network Using QualnetPerformance Evaluation of QoS parameters in UMTS Network Using Qualnet
Performance Evaluation of QoS parameters in UMTS Network Using Qualnetijdpsjournal
 
Paper
PaperPaper
Paperboraq
 
A Dynamic MAC Protocol for WCDMA Wireless Multimedia Networks
A Dynamic MAC Protocol for WCDMA Wireless Multimedia NetworksA Dynamic MAC Protocol for WCDMA Wireless Multimedia Networks
A Dynamic MAC Protocol for WCDMA Wireless Multimedia NetworksIDES Editor
 
Fookune ndss gsm (1)
Fookune ndss gsm (1)Fookune ndss gsm (1)
Fookune ndss gsm (1)Bhuwan Gupta
 
Mobile 2G/3G Workshop
Mobile 2G/3G WorkshopMobile 2G/3G Workshop
Mobile 2G/3G WorkshopJohnson Liu
 
wireless cellular network
wireless cellular networkwireless cellular network
wireless cellular networkMaulik Patel
 
Gsm architecture and interfaces
Gsm architecture and interfacesGsm architecture and interfaces
Gsm architecture and interfacesKennedy AC
 
Telco Evangelist Presentation Nsn
Telco Evangelist Presentation NsnTelco Evangelist Presentation Nsn
Telco Evangelist Presentation Nsnhbolten
 
EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK
EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK
EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK IJORCS
 

What's hot (20)

Analysis of Multicast Routing Protocols: Puma and Odmrp
Analysis of Multicast Routing Protocols: Puma and OdmrpAnalysis of Multicast Routing Protocols: Puma and Odmrp
Analysis of Multicast Routing Protocols: Puma and Odmrp
 
Overview gsm,gprs& umts
Overview gsm,gprs& umtsOverview gsm,gprs& umts
Overview gsm,gprs& umts
 
Cdma2000
Cdma2000Cdma2000
Cdma2000
 
Performance Evaluation of QoS parameters in UMTS Network Using Qualnet
Performance Evaluation of QoS parameters in UMTS Network Using QualnetPerformance Evaluation of QoS parameters in UMTS Network Using Qualnet
Performance Evaluation of QoS parameters in UMTS Network Using Qualnet
 
Paper
PaperPaper
Paper
 
Cdma2000
Cdma2000Cdma2000
Cdma2000
 
A Dynamic MAC Protocol for WCDMA Wireless Multimedia Networks
A Dynamic MAC Protocol for WCDMA Wireless Multimedia NetworksA Dynamic MAC Protocol for WCDMA Wireless Multimedia Networks
A Dynamic MAC Protocol for WCDMA Wireless Multimedia Networks
 
UMTS Network
UMTS NetworkUMTS Network
UMTS Network
 
FDMA-TDMA-CDMA
FDMA-TDMA-CDMAFDMA-TDMA-CDMA
FDMA-TDMA-CDMA
 
Fookune ndss gsm (1)
Fookune ndss gsm (1)Fookune ndss gsm (1)
Fookune ndss gsm (1)
 
UMTS, Introduction.
UMTS, Introduction.UMTS, Introduction.
UMTS, Introduction.
 
Mobile 2G/3G Workshop
Mobile 2G/3G WorkshopMobile 2G/3G Workshop
Mobile 2G/3G Workshop
 
Suman Jlt
Suman JltSuman Jlt
Suman Jlt
 
wireless cellular network
wireless cellular networkwireless cellular network
wireless cellular network
 
Gsm architecture and interfaces
Gsm architecture and interfacesGsm architecture and interfaces
Gsm architecture and interfaces
 
3G System
3G System3G System
3G System
 
Telco Evangelist Presentation Nsn
Telco Evangelist Presentation NsnTelco Evangelist Presentation Nsn
Telco Evangelist Presentation Nsn
 
Imt 2000
Imt 2000Imt 2000
Imt 2000
 
Plugin modul 1-e
Plugin modul 1-ePlugin modul 1-e
Plugin modul 1-e
 
EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK
EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK
EFFICIENT REAL-TIME VIDEO TRANSMISSION IN WIRELESS MESH NETWORK
 

Similar to Mobile Network Architecture and Applications

Early Mobile Telephone System Architecture.docx
Early Mobile Telephone System Architecture.docxEarly Mobile Telephone System Architecture.docx
Early Mobile Telephone System Architecture.docxPaulMuthenya
 
GSM TECHNOLOGIES-ARCHITECTURE.pptx
GSM TECHNOLOGIES-ARCHITECTURE.pptxGSM TECHNOLOGIES-ARCHITECTURE.pptx
GSM TECHNOLOGIES-ARCHITECTURE.pptxChaudharyJi6
 
3g cellular telephony
3g cellular telephony3g cellular telephony
3g cellular telephonyranjanphu
 
Mobile wireles-computing
Mobile wireles-computingMobile wireles-computing
Mobile wireles-computingLuthfi Prayoga
 
Mobile Computing Complete Introduction
Mobile Computing Complete IntroductionMobile Computing Complete Introduction
Mobile Computing Complete IntroductionDenis R
 
AWMCN-2.pptx
AWMCN-2.pptxAWMCN-2.pptx
AWMCN-2.pptxHadeeb
 
Wireless mobile communication
Wireless mobile communicationWireless mobile communication
Wireless mobile communicationBurhan Ahmed
 
cellular communication
cellular communicationcellular communication
cellular communicationjhcid
 
Mobile Multi Media Applications
Mobile Multi Media ApplicationsMobile Multi Media Applications
Mobile Multi Media Applicationskkkseld
 
Basic of 3 g technologies (digi lab_project).pptx [repaired]
Basic of 3 g technologies (digi lab_project).pptx [repaired]Basic of 3 g technologies (digi lab_project).pptx [repaired]
Basic of 3 g technologies (digi lab_project).pptx [repaired]Shahrin Ahammad
 
An Overview of Wireless Data Communications
An Overview of Wireless Data CommunicationsAn Overview of Wireless Data Communications
An Overview of Wireless Data Communicationsgo2project
 
Comparison between gsm &amp; cdma najmul hoque munshi
Comparison between gsm &amp; cdma najmul hoque munshiComparison between gsm &amp; cdma najmul hoque munshi
Comparison between gsm &amp; cdma najmul hoque munshiNajmulHoqueMunshi
 
Module 2_ GSM Mobile services.pptx
Module 2_  GSM Mobile services.pptxModule 2_  GSM Mobile services.pptx
Module 2_ GSM Mobile services.pptxnikshaikh786
 
Journey of Evolution of UMTS and CDMA
Journey of Evolution of UMTS and CDMAJourney of Evolution of UMTS and CDMA
Journey of Evolution of UMTS and CDMANaveen Jakhar, I.T.S
 

Similar to Mobile Network Architecture and Applications (20)

Early Mobile Telephone System Architecture.docx
Early Mobile Telephone System Architecture.docxEarly Mobile Telephone System Architecture.docx
Early Mobile Telephone System Architecture.docx
 
GSM TECHNOLOGIES-ARCHITECTURE.pptx
GSM TECHNOLOGIES-ARCHITECTURE.pptxGSM TECHNOLOGIES-ARCHITECTURE.pptx
GSM TECHNOLOGIES-ARCHITECTURE.pptx
 
chapter_1__2_.ppt.pdf
chapter_1__2_.ppt.pdfchapter_1__2_.ppt.pdf
chapter_1__2_.ppt.pdf
 
3g cellular telephony
3g cellular telephony3g cellular telephony
3g cellular telephony
 
Mobile wireles-computing
Mobile wireles-computingMobile wireles-computing
Mobile wireles-computing
 
Mobile Computing Complete Introduction
Mobile Computing Complete IntroductionMobile Computing Complete Introduction
Mobile Computing Complete Introduction
 
Cellular charles
Cellular charlesCellular charles
Cellular charles
 
AWMCN-2.pptx
AWMCN-2.pptxAWMCN-2.pptx
AWMCN-2.pptx
 
Modern trends in mobile communication
Modern trends in mobile communicationModern trends in mobile communication
Modern trends in mobile communication
 
Wireless mobile communication
Wireless mobile communicationWireless mobile communication
Wireless mobile communication
 
cellular communication
cellular communicationcellular communication
cellular communication
 
Mobile Multi Media Applications
Mobile Multi Media ApplicationsMobile Multi Media Applications
Mobile Multi Media Applications
 
Basic of 3 g technologies (digi lab_project).pptx [repaired]
Basic of 3 g technologies (digi lab_project).pptx [repaired]Basic of 3 g technologies (digi lab_project).pptx [repaired]
Basic of 3 g technologies (digi lab_project).pptx [repaired]
 
Wireless review
Wireless reviewWireless review
Wireless review
 
An Overview of Wireless Data Communications
An Overview of Wireless Data CommunicationsAn Overview of Wireless Data Communications
An Overview of Wireless Data Communications
 
Comparison between gsm &amp; cdma najmul hoque munshi
Comparison between gsm &amp; cdma najmul hoque munshiComparison between gsm &amp; cdma najmul hoque munshi
Comparison between gsm &amp; cdma najmul hoque munshi
 
M commerce
M commerceM commerce
M commerce
 
Module 2_ GSM Mobile services.pptx
Module 2_  GSM Mobile services.pptxModule 2_  GSM Mobile services.pptx
Module 2_ GSM Mobile services.pptx
 
Report
ReportReport
Report
 
Journey of Evolution of UMTS and CDMA
Journey of Evolution of UMTS and CDMAJourney of Evolution of UMTS and CDMA
Journey of Evolution of UMTS and CDMA
 

Mobile Network Architecture and Applications

  • 1. Sisteme mobile in Internet (Arhitectura si aplicatiile retelelor mobile) Nicolae Tomai FSEGA nicolae.tomai@econ.ubbcluj.ro http://www.econ.ubbcluj.ro/~nicolae.tomai 449
  • 2. Cuprins  Introducere  Wireless LANs: IEEE 802.11  Rutarea IP mobila  TCP in retele fara fir  Retele GSM  Arhitectura retelelor GPRS  WAP(Wireless application protocol)  Agenti mobili(Mobile agents)  Retele mobile si peer-to-peer(MANET-Mobile ad hoc networks) 2
  • 3. References  J. Schiller, “Mobile Communications”, Addison Wesley, 2000  802.11 Wireless LAN, IEEE standards, www.ieee.org  Mobile IP, RFC 2002, RFC 334, www.ietf.org  TCP over wireless, RFC 3150, RFC 3155, RFC 3449  A. Mehrotra, “GSM System Engineering”, Artech House, 1997  Bettstetter, Vogel and Eberspacher, “GPRS: Architecture, Protocols and Air Interface”, IEEE Communications Survey 1999, 3(3).  M.v.d. Heijden, M. Taylor. “Understanding WAP”, Artech House, 2000  Mobile Ad hoc networks, RFC 2501  Site-uri web: – www.palowireless.com – www.gsmworld.com; www.wapforum.org – www.etsi.org; www.3gtoday.com 3
  • 4. Retele fara fir  Ofera servicii de acces la calcul/comunicare in miscare  Retele celulare – Sisteme cu infastrucura bazata pe statii de baza  Wireless LANs – Retele locale in topologie infrastructura(cu AP) – Foarte flexibile in zona de receptie – Banda de transmisie destul de buna(>1 Mbit/s….)  Ad hoc Networks – Nu folosesc topologia infrastructura – Sunt folosite pentru aplicatii militare, de salvare, acasa, etc. 4
  • 5. Dispozitive mobile Tablets Palm-sized Clamshell handhelds Laptop computers Net–enabled mobile phones
  • 6. Sisteme de operare pentru disozitive mobile  Symbian-promovat ca OS(open source) de un consortiu: Nokia, Motorola, etc.  Windows Mobile-Microsoft  Windows CE  Windows mobile 7.0  iPhone  RIM BlackBerry  Linux-cu varianta Android de la Google  Palm OS 6
  • 8. Spectrul alocat pentru telefoanele mobile Sursa: (S60 Programming A Tutorial Guide Paul Coulton, 8 Reuben Edwards With Helen Clemson)
  • 9. Elemente componente ale unui sistem de telefonie mobila 9
  • 11. TDMA(Time Division Multiple Access)(2G) 11
  • 12. CDMA(Code Division Multiple Access)  Permite utilizatorilor sa imparta atit timpul cit si frecventa in acelasi timp, prin alocarea unui numar unic de identificare  Acest numar de identificare permite sistemului sa separe un apel de altul, daca acestea erau facute in acelasi timp  E o tehnica de baza pentru telefoanele de generatia a treia (3G) si permite viteze mari de transfer pentru fiecare utilizator 12
  • 14. Sistemul GPRS •SGSN(Serving GPRS Support Node) controlează transmiterea pachetelor de date prin întreaga reţea şi •GGSN(Gateway GPRS Support Node) care are rolul de a conecta reţeaua de telefonie mobilă la infrastructura Internetului. 14
  • 16. Alocarea frecventelor in 3G  Europa şi Japonia au optat pentru banda largă CDMA (W- CDMA) folosind diviziunea frecvenţei(FDD) în două perechi de benzi ale spectrului de frecvenţă.  USA a optat pentru CdmaOne care foloseşte benzi multiple ale sistemului pentru a realiza aşa numita undă purtătoare CDMA prin care se permitea accesul mai multor utilizatori în acelaşi timp.  Un alt sistem 3G, care e mai degrabă o extensie a GRPS -ului a sporit transferul de date spre evoluţia GSM(EDGE), care modifică legăturile fără fir între telefoanele mobile şi staţia de bază a sistemului GSM/GPRS pentru îmbunătăţirea ratei de transfer a datelor, standard care a fost dezvoltat de 3GPP.(3G Partnership Project)care a fost creat în urma asocierii a două categorii de organizaţii: organisme de standardizare şi reprezentaţi comerciali. Organismele de standardizare participante sunt ETSI (Europa), ARIB/TTC (Japonia), ANSI T1 (SUA) şi TTA (Coreea). Reprezentaţii pieţei de telecomunicaţii sunt UMTS Forum, GSA şi GSM Association. Cele trei reprezintă grupări majore de producători, operatori, companii de consultanţă, etc., care susţin interese comerciale proprii legate de evoluţia sistemului GSM 16
  • 17. W-CDMA in sistemul GSM/GPRS 17
  • 20. Limitari ale sistemelor mobile  Limitări datorate retelelor fara fir  Limitari ale largimii benzii de comunicatie  Deconectari frecvente  Eterogeneitatea si fragmentarea retelelor  Limitări datorate mobilitatii  rute defecte(intrerupte)  Lipsa facilitatilor privind mobilitatea a sistemelor/aplicatiilor  Limitări datorate dispozitivelor mobile  Timp scurt de viata al bateriei  Capacitati limitate(privind memoria, procesarea, etc.) 20
  • 21. Comparatie intre retelele fara fir si cele cu fir  Reglemetari ala frecventelor – Limitarea disponibilitatii si necesitatea coordonarii – Frecventele utilizate sunt deseori ocupate de alte aplicatii  Latimea benzii si intirzierile – Rate de transmisie relativ mici • De la cativa Kbits/s la Mbit/s. – Intirzieri mari • Sute de milisecunde – Rata mare a pierderilor • susceptibile la interferenta, de ex, cu masini elecrice, siste de iluminat, etc.  Partajeaza intotdeauna un mediu comun – Securitate scazuta, simplu de atacat – Interferente radio – Staţii de bază false poate atrage apelurile de pe telefoanele mobile – Necesita mecanisme de acces securizat 21
  • 22. Siteme celulare: ideea de baza  Conectivitate fara fir cu un singur salt(hop) – Spatiul este divizat in celule – O statie de baza este responsabila cu comunicarea cu hosturile in celula ei – Hosturile mobile pot schimba celulele in timpul comunicarii – Operatia de hand-off apare atunci când o gazdă mobila începe comunicarea prin intermediul unei noi staţii de bază  Factorii ce determina dimensiunea celulei – Numarul de utilizatori ce vor fi suportati – Multiplexarea si tehnologiile de transmisie 22
  • 23. Conceptul celular  Numarul limitat de frecvente => limiteaza numarul canalelor  Puterea de emisie a antenei => limiteaza numarul utilizatorilor  Celule mai mici => posibilitatea reutilizarii frecventelor => mai multi utilizatori  Statie de baza (BS): implementeaza multiplexarea diviziunii spatiului – Cluster: group de BS apropiate care impreuna utilizeaza toate canalele apropiate  Statiile mobile comunica numai printr-o statie de baza – FDMA, TDMA, CDMA pot fi utilizate intr-o celula  O cerere de crestere se face (mai multe canale sunt necesare) – Numarul statiilor de baza este crecut – Puterea de transmisie este redusa(descrescuta) corespunzator pentru a reduce interferentele 23
  • 24. Arhitectura sistemelor celulare  Fiecare celula este deservita de o statie de baza(BS-Base Station)  Fiecare sitem (BSS-Base Station Sistem) compus din statia de baza si dispozitivele “legate” la ea este conectat la un centru de comutare mobila (mobile switching center -MSC) prin legaturi fixe  Fiecare MSC este conectat la alte MSC-uri si PSTN(Public Switched Telephone Network) MSC MSC HLR HLR La alte VLR MSC-uri VLR PSTN PSTN 24
  • 25. Apel de configurare pentru iesirea in retea-la apel(Outgoing call setup)  Apel de configurare la iesire: – Se introduce numarul şi se trimite – Trnsmisiile mobile necesita o cerere de acces pe un canal ascendent(uplink)de semnalizare – Dacă reţeaua poate procesa apelul, BS trimite un mesaj de alocare a canalului – Reteaua procedeaza la setarea conexiunii(si realizeaza incasarea)  Activitatea retelei: – MSC determina locatia curenta a tintei mobile utilizind HLR, VLR si prin comunicarea cu alte MSC- uri – MSC-ul sursa initiaza un mesaj apel de configurare la MSC-ul care acoperă zona ţintă 25
  • 26. Apel de configurare la intrarea in retea-la primire(Incoming call setup)  Apel de configurare la iesire: – MSC-ul tinta (ce acopera locatia curenta a mobilului) initiaza un mesaj de paginare – BS trimite mai departe(forward) mesajul de paginare pe canalul de aducere(downlink) in aria de acoperire – Daca mobilul este activat(monitorizand canalul de semnalizare), el raspunde la BS – BS trimite un mesaj de alocare a canalului si informeaza MSC-ul  Activitatea retelei: – Reţeaua completează cele două jumătăţi ale conexiunii 26
  • 27. Termenul de hand-off(predare –preluare) se referă la procesul de transfer al unui apel sau sesiuni de date de la un canal conectat la reţeaua de bază pentru un altul  Initierea BS-ului: – Parasirea unei celule si trecerea la una noua (hand-off) apare în cazul în care nivelul semnalului de telefonie mobilă scade sub un prag minim – Creste incarcarea pe BS • Semnalul de monitorizare a fiecarui mobil • Determinarea tintei BS pentru predare-preluare(hand-off)  Asistarea mobilului: – Fiecare BS transmite periodic un semnal de prezenta/far(beacon) – Mobiul la receptionarea unui semnal de prezenta/far puternic de la un BS nou, iniţiază un proces de trecere(predare-primire)  Intersistem: – Se mută mobilele peste zone controlate de către diferite MSC-uri – Gestionarea similara cu cazul mobilelor asistate prin suplimentarea unui efort aditional al HLR/VLR 27
  • 28. Efectul mobilitatii asupra stivei de protocoale  Aplicatie – Aplicatii noi si adaptari  Transport – Controlul congestiei si al fluxului  Retea – Adresarea si rutarea  Link – Accesul la mediu si trecerea de la o celula la alta (hand-off)  Fizic – Transmisia, erorile si interferenta 28
  • 29. Aplicatii mobile(1)  Vehicule – Transmisia de noutati, conditii de drum, etc. – Retele ad-hoc cu vehicule apropiate pentru prevenirea accidentelor  Urgente – Transmiterea rapidă la spital a datelor pacienţilor – Retele ad-hoc in caz de cutremure sau dezastre naturale – militare ... 29
  • 30. Aplicatii mobile(2)  Agenti de vinzari mobili – Acces direct la baza de date centrala cu clientii – Baze de date consistente pentru toţi agenţii  Acces la Web – Acces la Web dinafara companiei(de pe teren) – Ghid turistic inteligent cu informaţii actualizate si dependente de locatie  Localizarea serviciilor – Gasirea serviciilor in mediul local 30
  • 31. Aplicatii mobile(3)  Servicii de informare – Cotatii bursiere, etc. – Vremea  Operatii deconectate – Agenti mobili, cumparaturi, etc.  Divertisment – Retele ad-hoc pentru jocuri multi-utilizator  Mesagerie 31
  • 32. Aplicatii mobile in industrie  Wireless access: (phone.com) openwave  Alerting services: myalert.com  Location services: (airflash) webraska.com  Intranet applications: (imedeon) viryanet.com  Banking services: macalla.com  Mobile agents: tryllian.com  …. 32
  • 33. Latimea de banda si aplicatiile UMTS EDGE GPRS, CDMA 2000 CDMA 2.5G 2G Speed, kbps 9.6 14.4 28 64 144 384 2000 Transaction Processing Messaging/Text Apps Voice/SMS Location Services Still Image Transfers Internet/VPN Access Database Access Document Transfer Low Quality Video High Quality Video 33
  • 34. Evolutia retelelor celulare  First-generation: Analog cellular systems (450-900 MHz) – Frequency shift keying; FDMA for spectrum sharing – NMT (Europe), AMPS (US)  Second-generation: Digital cellular systems (900, 1800 MHz) – TDMA/CDMA for spectrum sharing; Circuit switching – GSM (Europe), IS-136 (US), PDC (Japan) – <9.6kbps data rates  2.5G: Packet switching extensions – Digital: GSM to GPRS; Analog: AMPS to CDPD – <115kbps data rates  3G: Full-fledged data services – High speed, data and Internet services – IMT-2000, UMTS – <2Mbps data rates  4G 34
  • 35. GSM to GPRS  Resursele radio sunt alocate numai pentru unul sau mai multe(câteva) pachete la un moment dat, aşa ca GPRS permite: – Ca mai multi utilizatori sa partajaeze resursele radio şi transportul eficient de pachete – conectivitate la reţele externe de date orientate spre pachete – Tarifarea bazata pe volumul de trafic  Rata datelor mai mare (pana la 171 kbps in cazul ideal)  GPRS transmite SMS-urile pe canalele de date si nu pe cele de semnalizare ca GSM 35
  • 36. UMTS: Universal Mobile Telecomm. (standard)  Global seamless operation in multi-cell environment (SAT, macro, micro, pico)  Global roaming: multi-mode, multi-band, low-cost terminal, portable services & QoS  High data rates at different mobile speeds: 144kbps at vehicular speed (80km/h), 384 kbps at pedestrian speed, and 2Mbps indoor (office/home)  Multimedia interface to the internet  Based on core GSM, conforms to IMT-2000  W-CDMA as the air-interface 36
  • 37. Evolution to 3G Technologies 2G 3G IS-95B cdma2000 CDMA FDD GSM W-CDMA TDD GPRS EDGE & 136 HS outdoor IS-136 136 HS UWC-136 TDMA indoor 37
  • 38. Tehnologii fara fir 802.11n >150 Mbps 802.11n 70 Mbps 802.16(WiMax) 54 Mbps 802.11{a,b} 5-11 Mbps 802.11b .11 p-to-p link 1-2 Mbps Bluetooth 802.11 µwave p-to-p links 4G 3G 384 Kbps WCDMA, CDMA2000 2G 56 Kbps IS-95, GSM, CDMA Interior Exterior Exterior Exterior pe Distanta pe dist medie dist. mare lunga 10 – 30m 50 – 200m 200m – 4Km 5Km – 20Km 20m – 50Km 38
  • 39. Comparatie intre tehnologii Covearge 10 3G -HSPA WiFi 8 LTE 6 WiMAX 4 QoS Data rate 2 0 Mobility Cost effectiveness per bit LTE (Long Term Evolution)-4G 39
  • 40. Arhitectura retelei 3G Core Network Wireless Telephone Access Network Programmable Network Gateway Mobile Access Softswitch Router Application IP Intranet Server Access (HLR) IP Intranet IP Point User Profiles & Base Stations Authentication 802.11 802.11 3G Air Wired Access Internet Interface Access Point 40
  • 41. Retele fara fir locale WLAN  Advantage – Foarte flexibile in aria(zona) de receptie – Posibilitatea de realizare topologii ad-hoc – Legare usoara la retelele cablate  Dezavataje – Banda relativ joasa comparativ cu retelele cablate – Multe solutii proprietar  Topologie infrastructura sau ad-hoc (802.11) 41
  • 42. Topologiile retelelor fara fir(infrastructura si Adhoc) infrastructure network AP: Access Point AP AP wired network AP ad-hoc network 42 Source: Schiller
  • 43. Difference Between Wired and Wireless Ethernet LAN Wireless LAN B A B C A C  If both A and C sense the channel to be idle at the same time, they send at the same time.  Collision can be detected at sender in Ethernet.  Half-duplex radios in wireless cannot detect collision at sender. 43
  • 44. Hidden Terminal Problem A B C – A and C cannot hear each other. – A sends to B, C cannot receive A. – C wants to send to B, C senses a “free” medium (CS fails) – Collision occurs at B. – A cannot receive the collision (CD fails). – A is “hidden” for C. 44
  • 45. IEEE 802.11  Acknowledgements for reliability  Signaling packets for collision avoidance – RTS (request to send) – CTS (clear to send)  Signaling (RTS/CTS) packets contain – sender address – receiver address – duration (packet size + ACK)  Power-save mode 45
  • 46. Spectrum War: Status today Enterprise 802.11 Wireless Carrier Public 802.11 Network 46 Source: Pravin Bhagwat
  • 47. Spectrum War: Evolution Enterprise 802.11 Wireless Carrier Public 802.11 Network  Market consolidation  Entry of Wireless Carriers  Entry of new players  Footprint growth 47 Source: Pravin Bhagwat
  • 48. Spectrum War: Steady State Enterprise 802.11 Wireless Carrier Public 802.11 Network Virtual Carrier  Emergence of virtual carriers  Roaming agreements 48 Source: Pravin Bhagwat
  • 49. Routarea si mobilitatea  Gasirea unei cai de la o sursa la o destinatie  Probleme – Schimbarea frecventa a rutelor – Schimbarea rutei poate fi in legatura cu miscarea hostului – Latimea de banda relativ mica a legaturilor  Scopul protocoalelor de rutare – Micsorarea rutarii in ce priveste cimpurile aditionale(overhead) – Gasirea celor mai scurte rute – Gasirea rutelor “stabile”(despite mobility) 49
  • 50. IP-ul mobil: Ideea de baza MN Router S 3 Home agent Router Router 1 2 50 Source: Vaidya
  • 51. IP mobil: ideea de baza miscare Router S MN 3 Foreign agent Home agent Router Router Pachetele sunt tunelate utilizind IP in IP 1 2 51 Source: Vaidya
  • 52. Protocoalele TCP si UDP in cazul retelelor fara fir  TCP asigură: – Livrarea sigura si ordonata a pachetepor(utilizeaza retransmisiile, daca este necesar) – ACK-uri cumulative(un raspuns ACK-acknowledges pentru date primite contiguu-contiguously received data) – ACK-uri duplicat (ori de cite ori este receptionat un segment “neasteptat”-cu numar de secventa incorect- out-of-order) – Semantici cap la cap-end-to-end(receptorul trimite ACK dupa ce data a ajuns) – Implementeaza evitarea congestiei si utilizeaza controlul de tip fereasta de congestie- congestion window 52
  • 53. TCP in retele fără fir  Factorii ce afecteaza protocolul TCP in retele fara fir: – Erorile de transmisie in mediul fara fir • Pot cauza retransmiterea rapida- fast retransmit, ceea ce duce la diminuarea dimensiunii ferestrei de congestie • Reducerea ferestrei de congestie ca raspuns la erori nu este necesara – Rute cu multe salturi(multi-hop routes) in mediul fara fir partajat • Conexiunile “lungi”(rute cu multe hopuri) sunt mai dezavantajoase decit cele “scurte” pentru ca trebuie sa contina accesul la mediul fara fir in fiecare hop – Defectarea rutelor datorita mobilitatii 53
  • 54. Indirect TCP (I-TCP)  I-TCP splits the TCP connection – no changes to the TCP protocol for wired hosts – TCP connection is split at the foreign agent – hosts in wired network do not notice characteristics of wireless part – no real end-to-end connection any longer mobile host access point (foreign agent) „wired“ Internet „wireless“ TCP standard TCP 54 Source: Schiller
  • 55. TCP mobil (M-TCP)  Gestioneaza deconectari frecvente si interminabile  M-TCP spliteaza ca si I-TCP dar, – Nu modifica TCP-ul pentru reteaua fixa la agentul strain(FA-foreign agent) – optimizeaza TCP pentru FA to MH  Agentul strain(FA-Foreign Agent) – Monitorizeaza toate pachetele si daca detecteaza o deconectare atunci: • Seteaza fereastra emitatorului la 0 • Emitatorul(sender) trece automat in modul repetat – Fara caching, fara retransmisii 55
  • 56. Adaptarea aplicatiilor pentru mobilitate  Probleme de proiectare  Sistem transparent sau sistem netransparent/adecvat/ care cunoaste faptul ca va lucra intr-o retea fara fir  Aplicatie transparenta sau aplicatie netransparenta /adecvata/care cunoaste faptul ca va lucra intr-o retea fara fir  Modele  Model conventional de tip client/server  Model client/proxy/server  Mode caching/cu pre-incarcare  Model cu agenti mobili 56
  • 57. World Wide Web-ul si mobilitatea  Caracteristicile protocolului HTTP – A fost proiectat pentru banda larga si intirziere mica – E de tip client/server, iar comunicarea este de tip cerere/raspuns – E orientat conexiune, o conexiune pe cerere – Utilizeaza protocolul TCP intr-un dialog in trei pasi, foloseste de asemenea protocolul DNS  Caracteristicile HTML – Proiectat pentru calculatoare cu performante ridicate, afisaje color de mare definitie, mose, hard disk, etc. – De obicei paginile Web sunt optimizate pentru proiectare nu pentru comunicare, ignorind caracteristicile sistemelor clientului(end-system). 57
  • 58. Sisteme suport pentru WWW mobil  Browsere cu facilitati adaugate/sporite – Suport client adecvat pentru mobilitate  Proxi – Client proxi: cu pre incarcare, memorare temporara, utilizare off-line – Retea proxi: transformarea adaptiva a continutului pentru conexiuni – Proxi pentru client si retea  Servere cu facilitati sporite – Servere cu suport adecavat pentru mobilitate – Furnizarea continutului in multiple moduri in functie de capabilitatile clientului  Protocoale/limbaje noi – WAP/WML 58
  • 59. Modelul client/proxy/server  Functiuni proxi atit pentru un client cit si pentru serverul retelei fixe  Functiuni proxi pentru server adecvate mobilitatii la clientul mobil  Proxi-ul poate fi plasat in hostul mobil(Coda), sau in reteaua fixa sau la ambele (WebExpress)  Permite proiectarea de de clienti “slabi”(smart/thin client) in cazul unor dispozitive cu resurse reduse(aplicatia se lanseaza din browser si poate rula numai conectata si nu autonom fat client) 59
  • 60. Proxi Web in WebExpress The WebExpress Intercept Model 60 Source: Helal
  • 61. WAP(Wireless Application Protocol)  Navigator-browser – “Micro browser”, similar navigatoarelor existente  Limbajul de script – Similar limbajului Javascript, adaptat la dispozitivele mobile  Poarta-Gateway – Transitie de la sistemele fara fir la cele cu fir  Serverul – “Serverul WAP/ origine-Wap/Origin server”, similar serverelor Web existente  Nivelele protocolului – Nivelul transport, securitate, sesiune, etc.  Interfata cu aplicatia de telefonie – Functii de accces la telefonie 61
  • 62. WAP: elementele componente fixed network wireless network HTML WML WAP Binary WML Internet filter proxy HTML WML HTML filter/ Binary WML WAP web HTML proxy server WTA Binary WML server PSTN Binary WML: binary file format for clients 62 Source: Schiller
  • 63. WAP: modelul de referinta Internet A-SAP WAP HTML, Java Application Layer (WAE) Servicii aditionale si aplicatii S-SAP Session Layer (WSP) HTTP TR-SAP Transaction Layer (WTP) SEC-SAP SSL/TLS Security Layer (WTLS) T-SAP TCP/IP, Transport Layer (WDP) WCMP UDP/IP, media Purtatoarele (GSM, CDPD, GPRS ...) WAE comprises WML (Wireless Markup Language), WML Script, WTAI etc. 63 Source: Schiller
  • 64. Stiva de protocoale WAP  WDP – Functionalitati similare cu UDP in retele IP  WTLS – functionalitati similare cu SSL/TLS (optimizat pentru retele fara fir)  WTP – Clasa 0: analog cu UDP – Clasa 1: analog cu TCP (fara setarea privind overhead-ul conexiunii) – Clasa 2: analog cu RPC (optimizat pentru retele fara fir) – features of “user acknowledgement”, “hold on”  WSP – WSP/B: analog cu http 1.1 (cu facilitati de suspendare/reluare) – metoda: analoaga cu RPC/RMI – Caracteristici de invocare asincrona (confirmate/neconfirmate) 64
  • 65. Modelul cu agenti mobili  Agentul mobil primeste cererea clientului si  Agentul mobil se muta in reteaua fixa  Agentul mobil actioneza la server ca si un client  Agentul mobil realizeaza transformarile si filtrarea  Agentul mobil se intoarce inapoi la platforma mobila atunci cind clientul este conectat 65
  • 67. Cuprins  Introducere  Wireless LANs: IEEE 802.11  Rutarea IP mobila  TCP in retele fara fir  Retele GSM  Arhitectura retelelor GPRS  WAP(Wireless application protocol)  Agenti mobili(Mobile agents)  Retele mobile si peer-to-peer(MANET-Mobile ad hoc networks) 67
  • 68. How Wireless LANs are different  Destination address does not equal destination location  The media impact the design – wireless LANs intended to cover reasonable geographic distances must be built from basic coverage blocks  Impact of handling mobile (and portable) stations – Propagation effects – Mobility management – power management 68
  • 69. Wireless Media  Physical layers in wireless networks – Use a medium that has neither absolute nor readily observable boundaries outside which stations are unable to receive frames – Are unprotected from outside signals – Communicate over a medium significantly less reliable than wired PHYs – Have dynamic topologies – Lack full connectivity and therefore the assumption normally made that every station (STA) can hear every other STA in invalid (I.e., STAs may be “hidden” from each other) – Have time varying and asymmetric propagation properties 69
  • 70. 802.11: Motivation  Can we apply media access methods from fixed networks  Example CSMA/CD – Carrier Sense Multiple Access with Collision Detection – send as soon as the medium is free, listen into the medium if a collision occurs (original method in IEEE 802.3)  Medium access problems in wireless networks – signal strength decreases proportional to the square of the distance – sender would apply CS and CD, but the collisions happen at the receiver – sender may not “hear” the collision, i.e., CD does not work – CS might not work, e.g. if a terminal is “hidden”  Hidden and exposed terminals 70
  • 71. Solution for Hidden/Exposed Terminals  A first sends a Request-to-Send (RTS) to B  On receiving RTS, B responds Clear-to-Send (CTS)  Hidden node C overhears CTS and keeps quiet – Transfer duration is included in both RTS and CTS  Exposed node overhears a RTS but not the CTS – D‟s transmission cannot interfere at B RTS RTS D A B C CTS CTS DATA 71
  • 72. IEEE 802.11  Wireless LAN standard defined in the unlicensed spectrum (2.4 GHz and 5 GHz U-NII bands)  Standards covers the MAC sublayer and PHY layers  Three different physical layers in the 2.4 GHz band – FHSS, DSSS and IR  OFDM based PHY layer in the 5 GHz band 72
  • 73. Components of IEEE 802.11 architecture  The basic service set (BSS) is the basic building block of an IEEE 802.11 LAN  The ovals can be thought of as the coverage area within which member stations can directly communicate  The Independent BSS (IBSS) is the simplest LAN. It may consist of as few as two stations ad-hoc network BSS1 BSS2 73
  • 74. 802.11 - ad-hoc network (DCF) 802.11 LAN STA1  Direct communication BSS1 STA3 within a limited range – Station (STA): terminal with access STA2 mechanisms to the wireless medium – Basic Service Set (BSS): BSS2 group of stations using the same radio frequency STA5 STA4 802.11 LAN 74 Source: Schiller
  • 75. 802.11 - infrastructure network (PCF) Station (STA) 802.11 LAN – terminal with access 802.x LAN mechanisms to the wireless medium and radio contact to STA1 the access point BSS1 Basic Service Set (BSS) Portal Access – group of stations using the Point same radio frequency Distribution System Access Point Access – station integrated into the ESS Point wireless LAN and the distribution system BSS2 Portal – bridge to other (wired) networks Distribution System STA2 STA3 802.11 LAN – interconnection network to form one logical network (EES: Extended Service Set) based on several BSS 75 Source: Schiller
  • 76. Distribution System (DS) concepts  The Distribution system interconnects multiple BSSs  802.11 standard logically separates the wireless medium from the distribution system – it does not preclude, nor demand, that the multiple media be same or different  An Access Point (AP) is a STA that provides access to the DS by providing DS services in addition to acting as a STA.  Data moves between BSS and the DS via an AP  The DS and BSSs allow 802.11 to create a wireless network of arbitrary size and complexity called the Extended Service Set network (ESS) 76
  • 77. 802.11- in the TCP/IP stack fixed terminal mobile terminal server infrastructure network access point application application TCP TCP IP IP LLC LLC LLC 802.11 MAC 802.11 MAC 802.3 MAC 802.3 MAC 802.11 PHY 802.11 PHY 802.3 PHY 802.3 PHY 77
  • 78. 802.11 - Layers and functions  MAC  PLCP Physical Layer Convergence Protocol – access mechanisms, fragmentation, encryption – clear channel assessment signal (carrier sense)  MAC Management – synchronization, roaming,  PMD Physical Medium Dependent MIB, power management – modulation, coding  PHY Management Station Management – channel selection, MIB LLC  Station Management DLC MAC MAC Management – coordination of all management functions PLCP PHY PHY Management PMD 7.8.1 78
  • 79. 802.11 - Physical layer  3 versions: 2 radio (typically 2.4 GHz), 1 IR – data rates 1, 2, or 11 Mbit/s  FHSS (Frequency Hopping Spread Spectrum) – spreading, despreading, signal strength, typically 1 Mbit/s – min. 2.5 frequency hops/s (USA), two-level GFSK modulation  DSSS (Direct Sequence Spread Spectrum) – DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK) – preamble and header of a frame is always transmitted with 1 Mbit/s – chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code) – max. radiated power 1 W (USA), 100 mW (EU), min. 1mW  Infrared – 850-950 nm, diffuse light, typ. 10 m range – carrier detection, energy detection, synchonization 79
  • 80. Spread-spectrum communications 80 Source: Intersil
  • 81. DSSS Barker Code modulation 81 Source: Intersil
  • 82. DSSS properties 82 Source: Intersil
  • 83. 802.11 - MAC layer  Traffic services – Asynchronous Data Service (mandatory) – DCF – Time-Bounded Service (optional) - PCF  Access methods – DCF CSMA/CA (mandatory) • collision avoidance via randomized back-off mechanism • ACK packet for acknowledgements (not for broadcasts) – DCF w/ RTS/CTS (optional) • avoids hidden terminal problem – PCF (optional) • access point polls terminals according to a list 83
  • 84. 802.11 - Carrier Sensing  In IEEE 802.11, carrier sensing is performed – at the air interface (physical carrier sensing), and – at the MAC layer (virtual carrier sensing)  Physical carrier sensing – detects presence of other users by analyzing all detected packets – Detects activity in the channel via relative signal strength from other sources  Virtual carrier sensing is done by sending MPDU duration information in the header of RTS/CTS and data frames  Channel is busy if either mechanisms indicate it to be – Duration field indicates the amount of time (in microseconds) required to complete frame transmission – Stations in the BSS use the information in the duration field to adjust their network allocation vector (NAV) 84
  • 85. 802.11 - Reliability  Use of acknowledgements – When B receives DATA from A, B sends an ACK – If A fails to receive an ACK, A retransmits the DATA – Both C and D remain quiet until ACK (to prevent collision of ACK) – Expected duration of transmission+ACK is included in RTS/CTS packets RTS RTS D A B C CTS CTS DATA ACK 85
  • 86. 802.11 - Priorities  defined through different inter frame spaces – mandatory idle time intervals between the transmission of frames  SIFS (Short Inter Frame Spacing) – highest priority, for ACK, CTS, polling response – SIFSTime and SlotTime are fixed per PHY layer – (10 s and 20 s respectively in DSSS)  PIFS (PCF IFS) – medium priority, for time-bounded service using PCF – PIFSTime = SIFSTime + SlotTime  DIFS (DCF IFS) – lowest priority, for asynchronous data service – DCF-IFS (DIFS): DIFSTime = SIFSTime + 2xSlotTime 86
  • 87. 802.11 - CSMA/CA contention window DIFS DIFS (randomized back-off mechanism) medium busy next frame direct access if t medium is free  DIFS slot time – station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment) – if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type) – if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time) – if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness) 87
  • 88. 802.11 –CSMA/CA example DIFS DIFS DIFS DIFS boe bor boe bor boe busy station1 boe busy station2 busy station3 boe busy boe bor station4 boe bor boe busy boe bor station5 t busy medium not idle (frame, ack etc.) boe elapsed backoff time packet arrival at MAC bor residual backoff time 88
  • 89. 802.11 - Collision Avoidance  Collision avoidance: Once channel becomes idle, the node waits for a randomly chosen duration before attempting to transmit  DCF – When transmitting a packet, choose a backoff interval in the range [0,cw]; cw is contention window – Count down the backoff interval when medium is idle – Count-down is suspended if medium becomes busy – When backoff interval reaches 0, transmit RTS  Time spent counting down backoff intervals is part of MAC overhead 89
  • 90. DCF Example B1 = 25 B1 = 5 wait data data wait B2 = 20 B2 = 15 B2 = 10 B1 and B2 are backoff intervals cw = 31 at nodes 1 and 2 90
  • 91. 802.11 - Congestion Control  Contention window (cw) in DCF: Congestion control achieved by dynamically choosing cw  large cw leads to larger backoff intervals  small cw leads to larger number of collisions  Binary Exponential Backoff in DCF: – When a node fails to receive CTS in response to its RTS, it increases the contention window • cw is doubled (up to a bound CWmax) – Upon successful completion data transfer, restore cw to CWmin 91
  • 92. 802.11 - CSMA/CA II  station has to wait for DIFS before sending data  receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC)  automatic retransmission of data packets in case of transmission errors DIFS data sender SIFS ACK receiver DIFS other data stations t waiting time contention 92
  • 93. 802.11 –RTS/CTS  station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium)  acknowledgement via CTS after SIFS by receiver (if ready to receive)  sender can now send data at once, acknowledgement via ACK  other stations store medium reservations distributed via RTS and CTS DIFS RTS data sender SIFS SIFS CTS SIFS ACK receiver NAV (RTS) DIFS other NAV (CTS) data stations t defer access contention 93
  • 94. Fragmentation DIFS RTS frag1 frag2 sender SIFS SIFS SIFS CTS SIFS ACK1 SIFS ACK2 receiver NAV (RTS) NAV (CTS) NAV (frag1) DIFS other NAV (ACK1) data stations t contention 94
  • 95. 802.11 - Point Coordination Function 95
  • 96. 802.11 - PCF I t0 t1 SuperFrame medium busy PIFS SIFS SIFS D1 D2 point coordinator SIFS SIFS U1 U2 wireless stations stations„ NAV NAV 96
  • 97. 802.11 - PCF II t2 t3 t4 PIFS SIFS D3 D4 CFend point coordinator SIFS U4 wireless stations stations„ NAV NAV contention free period contention t period 97
  • 98. CFP structure and Timing 98
  • 100. Polling Mechanisms  With DCF, there is no mechanism to guarantee minimum delay for time-bound services  PCF wastes bandwidth (control overhead) when network load is light, but delays are bounded  With Round Robin (RR) polling, 11% of time was used for polling  This values drops to 4 % when optimized polling is used  Implicit signaling mechanism for STAs to indicate when they have data to send improves performance 100
  • 101. Coexistence of PCF and DCF  PC controls frame transfers during a Contention Free Period (CFP). – CF-Poll control frame is used by the PC to invite a station to send data – CF-End is used to signal the end of the CFP  The CFP alternates with a CP, when DCF controls frame transfers – The CP must be large enough to send at least one maximum-sized MPDU including RTS/CTS/ACK  CFPs are generated at the CFP repetition rate and each CFP begins with a beacon frame 101
  • 102. 802.11 - Frame format  Types – control frames, management frames, data frames  Sequence numbers – important against duplicated frames due to lost ACKs  Addresses – receiver, transmitter (physical), BSS identifier, sender (logical)  Miscellaneous – sending time, checksum, frame control, data bytes 2 2 6 6 6 2 6 0-2312 4 Frame Duration Address Address Address Sequence Address Data CRC Control ID 1 2 3 Control 4 version, type, fragmentation, security, ... 102
  • 104. Types of Frames  Control Frames – RTS/CTS/ACK – CF-Poll/CF-End  Management Frames – Beacons – Probe Request/Response – Association Request/Response – Dissociation/Reassociation – Authentication/Deauthentication – ATIM  Data Frames 104
  • 105. MAC address format scenario to DS from address 1 address 2 address 3 address 4 DS ad-hoc network 0 0 DA SA BSSID - infrastructure 0 1 DA BSSID SA - network, from AP infrastructure 1 0 BSSID SA DA - network, to AP infrastructure 1 1 RA TA DA SA network, within DS DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address 105
  • 106. 802.11 - MAC management  Synchronization – try to find a LAN, try to stay within a LAN – timer etc.  Power management – sleep-mode without missing a message – periodic sleep, frame buffering, traffic measurements  Association/Reassociation – integration into a LAN – roaming, i.e. change networks by changing access points – scanning, i.e. active search for a network  MIB - Management Information Base – managing, read, write 106
  • 107. 802.11 - Synchronization  All STAs within a BSS are synchronized to a common clock – PCF mode: AP is the timing master • periodically transmits Beacon frames containing Timing Synchronization function (TSF) • Receiving stations accepts the timestamp value in TSF – DCF mode: TSF implements a distributed algorithm • Each station adopts the timing received from any beacon that has TSF value later than its own TSF timer  This mechanism keeps the synchronization of the TSF timers in a BSS to within 4 s plus the maximum propagation delay of the PHY layer 107
  • 108. Synchronization using a Beacon (infrastructure) beacon interval B B B B access point busy busy busy busy medium t value of the timestamp B beacon frame 108
  • 109. Synchronization using a Beacon (ad- hoc) beacon interval B1 B1 station1 B2 B2 station2 busy busy busy busy medium t value of the timestamp B beacon frame random delay 109
  • 110. 802.11 - Power management  Idea: switch the transceiver off if not needed – States of a station: sleep and awake  Timing Synchronization Function (TSF) – stations wake up at the same time  Infrastructure – Traffic Indication Map (TIM) • list of unicast receivers transmitted by AP – Delivery Traffic Indication Map (DTIM) • list of broadcast/multicast receivers transmitted by AP  Ad-hoc – Ad-hoc Traffic Indication Map (ATIM) • announcement of receivers by stations buffering frames • more complicated - no central AP • collision of ATIMs possible (scalability?) 110
  • 111. 802.11 - Energy conservation  Power Saving in IEEE 802.11 (Infrastructure Mode) – An Access Point periodically transmits a beacon indicating which nodes have packets waiting for them – Each power saving (PS) node wakes up periodically to receive the beacon – If a node has a packet waiting, then it sends a PS- Poll • After waiting for a backoff interval in [0,CWmin] – Access Point sends the data in response to PS-poll 111
  • 112. Power saving with wake-up patterns (infrastructure) TIM interval DTIM interval D B T T d D B access point busy busy busy busy medium p d station t T TIM D DTIM awake B broadcast/multicast p PS poll d data transmission to/from the station 112
  • 113. Power saving with wake-up patterns (ad-hoc) ATIM window beacon interval B1 A D B1 station1 B2 B2 a d station2 t B beacon frame random delay A transmit ATIM D transmit data awake a acknowledge ATIM d acknowledge data 113
  • 114. 802.11 - Roaming  No or bad connection in PCF mode? Then perform:  Scanning – scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer  Reassociation Request – station sends a request to one or several AP(s)  Reassociation Response – success: AP has answered, station can now participate – failure: continue scanning  AP accepts Reassociation Request – signal the new station to the distribution system – the distribution system updates its data base (i.e., location information) – typically, the distribution system now informs the old AP so it can release resources 114
  • 115. Hardware  Original WaveLAN card (NCR) – 914 MHz Radio Frequency – Transmit power 281.8 mW – Transmission Range ~250 m (outdoors) at 2Mbps – SNRT 10 dB (capture)  WaveLAN II (Lucent) – 2.4 GHz radio frequency range – Transmit Power 30mW – Transmission range 376 m (outdoors) at 2 Mbps (60m indoors) – Receive Threshold = –81dBm – Carrier Sense Threshold = -111dBm 115
  • 116. 802.11 current status 802.11i LLC security WEP MAC 802.11f MAC Mgmt Inter Access Point Protocol 802.11e MIB QoS enhancements PHY DSSS FH IR OFDM 802.11b 5,11 Mbps 802.11a 6,9,12,18,24 802.11g 36,48,54 Mbps 20+ Mbps 116
  • 117. IEEE 802.11 Summary  Infrastructure (PCF) and adhoc (DCF) modes  Signaling packets for collision avoidance – Medium is reserved for the duration of the transmission – Beacons in PCF – RTS-CTS in DCF  Acknowledgements for reliability  Binary exponential backoff for congestion control  Power save mode for energy conservation 117
  • 118. Cuprins  Introducere  Wireless LANs: IEEE 802.11  Rutarea IP mobila  TCP in retele fara fir  Retele GSM  Arhitectura retelelor GPRS  WAP(Wireless application protocol)  Agenti mobili(Mobile agents)  Retele mobile si peer-to-peer(MANET-Mobile ad hoc networks) 118
  • 119. Rutarea traditională  Un protocol de rutare populeaza tabela de rutare a unui router  Un protocol de rutare se bazeaza pe algoritmii Distance-Vector sau Link-State 119
  • 120. Routarea si mobilitatea  Gasirea unei cai de la o sursa la o destinatie  Probleme – Schimbarea frecventa a rutelor – Schimbarea rutei poate fi in legatura cu miscarea hostului – Latimea de banda relativ mica a legaturilor  Scopul protocoalelor de rutare – Micsorarea rutarii in ce priveste cimpurile aditionale(overhead) – Gasirea celor mai scurte rute – Gasirea rutelor “stabile”(despite mobility) 120
  • 121. IP mobil (RFC 3220): motivarea  Rutarea traditionala – Bazata pe adrese IP; prefixul retelei determina subreteaua – Schimbarea fizica a subretelei implica • Schimbarea adresei IP (dupa noua subretea), sau • O tabela de rutare cu intrari speciale pentru transmitrea pacheteor la noua subretea  Schimbarea adeselor IP – Actualizarea DNS necesita un timp mare – Conexiunile TCP se opresc  Schimbarea intrarilor in tabelele de rutare – Nu exista o evidenta cu numarul hosturilor mobile si schimbarile frecvente a locatiilor lor – Probleme de securitate  Cerintele solutiei – Folosirea aceleiasi adrese IP, utilizarea acelorasi protocoale – Autentificarea mesajelor, … 121
  • 122. IP-ul mobil: Ideea de baza MN(mobile Router S(sender) Node) 3 Home agent Router Router 1 2 122 Source: Vaidya
  • 123. IP mobil: ideea de baza miscare Router S MN 3 Foreign agent Home agent Router Router Pachetele sunt tunelate utilizind IP in IP 1 2 123 Source: Vaidya
  • 124. IP mobil : terminologia  Nod Mobil(Mobile Node-MN) – Nod care se muta prin retea fara a-si schimba adresa IP  Agent de acasa/local(Home Agent-HA) – Host din reteaua de-acasa/proprie a nodului mobil( MN), de obicei un router – Inregistreaza locatia nodului MN, tuneleaza pachetele IP la COA  Agent strain( Foreign Agent -FA) – Host din reteaua curenta/straina, unde se gaseste momentan MN, de obicei un router – Forwardeaza pachetele tunelate la MN, de obicei ruterul implicit al lui MN din reteaua de acasa/proprie  “Ingrijitorul/gestionarul” de adrese(Care-of Address -COA) – Adreseaza punctele de capat ale tunelului curent( tunnel end- point) de la MN( la FA sau MN) – Acualizeaza locatia MN-ului din punctul de vedere al IP  Nodul corespondent(Correspondent Node (CN) – Hostul cu care MN doreste sa “corespondeze” ( conexiunea TCP ) 124
  • 125. Transferul datelor la sistemul mobil HA 2 MN Reteaua proprie 3 Receptor (home network) Internet (receiver) FA foreign network 1 1. Emitatorul trimite la adresa IP a nodului CN mobil MN, iar HA intercepteaza pachetele (proxy ARP) 2. HA tuneleaza pachetele la COA, aici FA, Emitator(sender) prin incapsulare 3. FA trimite pachetele mai departe la MN 125 Soursa: Schiller
  • 126. Transferul datelor de la sistemul mobil Agent propriu HA-home agent 1 MN Retea proprie Emitator (home network) Internet (sender) FA Retea straina (foreign network) 1. Emitatorul trimite la adresa IP a CN a receptorului;de obicei FA lucreaza ca si un router implicit Receptor(receiver) 126 Source: Schiller
  • 127. IP-ul mobil: Operatia de bază  Agentul de averizare – Periodic HA/FA trimit messaje de avertizare in subreteaua lor fizica – MN asculta mesajele si detecteaza daca acestea sunt din reteaua proprie sau straină – MN citeste o/un COA din mesajele de averizare a FA  Inregistrarea MN – MN semnaleaza COA la HA prin FA – HA raspundela MN prin FA – Timpul de viata este limitat, necesar sa fie securizat dupa autentificare  Proxi-ul HA – HA avertizeaza asupra adresei IP a lui MN (ca si pentru sistemele fixe) – Pachetele pentru MN sunt trimise la HA – Schimbari in COA/FA  Tunelarea pachetelor – HA la MN prin FA 127
  • 128. Agentul de averizare 0 7 8 15 16 23 24 31 type code checksum #addresses addr. size lifetime router address 1 preference level 1 router address 2 preference level 2 ... type length sequence number registration lifetime R B H F M G V reserved COA 1 COA 2 ... 128
  • 129. Inregistrarea(registration) MN FA HA MN HA t t 129
  • 130. Cererea de inregistrare(Registration request) 0 7 8 15 16 23 24 31 type S B DMG V rsv lifetime home address home agent COA identification extensions . . . 130
  • 131. Incapsularea IP-in-IP  Incapsularea IP-in-IP- (obligatorie in RFC 2003) – tunel intre HA si COA ver. IHL TOS length IP identification flags fragment offset TTL IP-in-IP IP checksum IP address of HA Care-of address COA ver. IHL TOS length IP identification flags fragment offset TTL lay. 4 prot. IP checksum IP address of CN IP address of MN TCP/UDP/ ... payload 131
  • 132. IP-ul mobil: Alte probleme  Tunelarea inversa – Firewall-urile permit numai adresari topologice “topological correct“ – Un pachet de la MN incapsulat de FA este corect din punct de vedere topologic(topological correct)  Optimizari – Rutarea triunghiulara • HA informeaza emitatorul privitor la locatia curenta a lui MN – Schimbarea lui FA • noul FA informeaza vechiul FA sa evite pachetul pierdut, iar vechiul FA forvardeaza pachetele ramase la noul FA. 132
  • 133. IP-ul mobil -recapitulare  Nodul mobil se muta la noua locatie  Agent de avertisment de agentul strain  Inregistrarea nodului mobil cu agentul de acasa  Realizarea proxi-ului de agentul de-acasa pentru nodul mobil  Incapsularea pachetelor  Tunnelarea agentului de-acasa la nodul mobil prin nodul strain  Tunelarea inversa  Optimizarea pentru rutarea triunghiulara(in bucla) 133
  • 134. Cuprins  Introducere  Wireless LANs: IEEE 802.11  Rutarea IP mobila  TCP in retele fara fir  Retele GSM  Arhitectura retelelor GPRS  WAP(Wireless application protocol)  Agenti mobili(Mobile agents)  Retele mobile si peer-to-peer(MANET-Mobile ad hoc networks) 134
  • 135. Transmission Control Protocol (TCP)  Livrarea sigura si ordonata – Prin pachete de raspuns si retransmisii  Dialog de lucru cap la cap(end-to-end semantics) – Raspunsurile trimise la emitator confirma livrarea datelor primite de receptor – Ack este trimis numai dupa ce data a ajuns la receptor – Ack cumulativ(pentru mai multe segmente)  Implementeaza evitarea congestiei si controlul de flux 135
  • 136. Controlul fluxului bazat pe ferestre  Protocolul de transmisie cu fereastră glisantă  Dimensiunea ferestrei este minimul din – Fereastra de averizare a receptorului- determinata de spatiul disponibil in bufferul(memoria tampon) a receptorului – Fereastra de congestie – determinata de emitator pe baza reactiei retelei Fereastra emitatorului 1 2 3 4 5 6 7 8 9 10 11 12 13 Ack-urile primite Ne transmise 136
  • 137. Comportamentul de baza TCP 14 Evitarea congestiei Congestion Window size 12 10 (segments) 8 Nivelul startului 6Startul incet incet 4 2 0 0 1 2 3 4 5 6 7 8 Time (round trips) Exemplul presupune ca ACK-urile nu sunt intirziate 137
  • 138. TCP: detectarea pachetelor pierdute  Timeout-ul de retransmisie – Initiaza startul incet  Raspunsuri duplicate – Initiaza retransmiterea rapida  Presupunerea ca toate pachetele sunt pierdute datorita congestiei 138
  • 139. TCP dupa timeout Dupa timeout Fereastra de Congestion window (segments) 25 congestie(cwnd) =20 20 15 10 Nivelul startului Nivelul startului incet 5 Incet ssthresh = 10 ssthresh = 8 0 12 15 20 22 25 0 3 6 9 Time (round trips) 139
  • 140. TCP dupa retransmisia rapida Dupa recuperarea rapida 10 Window size (segments) Fereastra initiata de receptor 8 6 4 2 0 0 2 4 6 8 10 12 14 Time (round trips) Dupa retransmisia rapida si recuperarea rapida dimensiunea ferestrei este redusa la jumatate. 140
  • 141. Impactul erorilor de transmisie  Canalele fara fir pot avea erori aleatoare in avalansa  Erorile in avalansa pot cauza timeout  Erorile aleatoare pot cauza retransmisii rapide  TCP nu poate face distinctia intre pachetele pierdute datorita congestiei si cele pierdute datorita erorilor de transmisie  Nu totdeauna este necesara reducerea ferestrei de congestie la erori (multe fiind datorate inrautatirii transmisiei prin mediu) 141
  • 142. Splitarea conexiunii  Conexiunea TCP capat la capat(end-to-end) este Impartita/”sparta” intr-o conexiune pe partea cablata a rutei si una pe partea fara fir a rutei  Conexiunea intre hostul fara fir MH si hostul fix FH trece prin statia de baza BS  FH-MH = FH-BS + BS-MH FH BS MH Host fix Statia de baza Hostul mobil 142
  • 143. I-TCP: Consideratii privind splitarea conexiunii Starea conexiunii prin-TCP Conexiunea TCP Conexiunea TCP application application application rxmt transport transport transport network network network link link link physical physical physical Fara fir(wireless) 143
  • 144. Protocolul snoop  Pachetele de date sunt memorate(bufferate) in statia se baza BS – Se permite astfel nivelului legatura de date retransmisia lor  Cind raspunsurile duplicat sunt primite de BS de la MH – Se retransmit pe legatura fara fir, daca pachetul este prezent in buffer – Se arunca raspunsul duplicat(drop dupack)  Se previne retransmisia rapida TCP de emitatorul FH(fix host) FH BS MH 144
  • 145. Protocol snoop Starea conexiunii prin TCP TCP connection application application application transport transport transport network network network rxmt link link link physical physical physical FH BS MH wireless 145
  • 146. Impactul trecerii de la un nod la altul( la alt BS)(Hand-offs)  Splitarea conexiunii – Starea “hard” a conex. din statia de baza trebuie sa fie mutata la noua statie de baza  Protocolul Snoop – Starea “soft” a conex. nu e nevoie sa fie mutata – In timp ce noua statie de baza construieste noua stare, pachetele pierdute nu pot fi recuperate local  Trecerile frcvente de la un nod la altul constituie o problema pentru schemele care realizeaza o cantitate semnificativa a starilor de conexiune la statiile de baza – Starea” hard” a conex. nu se pierde – Starea “soft” a conex. tebuie sa fie recreata pentru a obtine o performanta buna 146
  • 147. M-TCP(mobile TCP)  Similar cu splitarea conexiunii, M-TCP spliteaza o conexiune TCP in doua parti logice – Cele doua parti au control de flux independent ca si in I-TCP  BS nu trimite un ACK la MH, pina cind BS a primit un ACK de la MH – Pastreaza semanticile(modul de lucru) capat la capat  BS cu mentinerea ack pentru ACK-ul ultimului octet al lui MH(?) Ack 999 Ack 1000 FH BS MH 147
  • 148. M-TCP  Cind este receptionat un nou ACK impreuna cu un avertisment al receptorului de tipul Window=0, emitatorul intra in modul “continuare”  Emitatorul nu trimite nici o data in modul – Cu exceptia cazului in care modul “continuare” este anulat  Cind este primit un avertisment de tip fereastra pozitiva, emitatorul iese din modul “continuare”  La iesirea din modul “continuare” , valorile pentru RTO si cwnd sunt aceleasi ca si inaintea modului “continuare” 148
  • 149. BlocareaTCP  M-TCP are nevoie de ajutor de la statia de baza(base station) – Statia de baza mentine ack pentru un octet(?) – Statia de baza utilizeaza acest ack sa trimita o fereastra de avertisment egala cu zero cind un host mobil se muta la alta celula  Blocarea TCP cere receptorului sa trimita o fereastra de avertizare egala cu zero (ZWA) Mobile TCP receiver FH BS MH 149
  • 150. TCP in medii fara fir-recapitulare  Presupunerea ca pachetele pierdute implica o congestie nu este adevarata in mediile fara fir  Nu este adecvata invocarea controlului congestiei ca raspuns la pachetele pierdute  Citeava propuneri de adaptare a TCP in mediile fara fir  Modificări la: – Nodul fix(FH) – Statia de baza(BS) – Nodul mobil(MH) 150
  • 151. Cuprins  Introducere  Wireless LANs: IEEE 802.11  Rutarea IP mobila  TCP in retele fara fir  Retele GSM  Arhitectura retelelor GPRS  WAP(Wireless application protocol)  Agenti mobili(Mobile agents)  Retele mobile si peer-to-peer(MANET-Mobile ad hoc networks) 151
  • 152. GSM: Arhitectura PSTN-Public Switched Telephone Network, ISDN-Integrated Services Digital Network, PDN-Packet Data Network 152
  • 153. Base Transceiver Station (BTS)  Una pe celula  E compusa dintr-un transmitator si un receptor de mare viteza  Functiile statiei BTS – Are doua canale Un canal de semnalizare si unul pentru date(Signalling and Data Channel) Programarea mesajelor Detectarea accesului aleatoriu – Realizeaza codificarea pentru protectia la erori a canalului radio • Adaptarea vitezei in functie de erori, conditii de propagare, etc.  Identificarea BTS prin codul de identitate (BtS Identity 153 Code-BSIC)
  • 154. Base Station Controller (BSC)  Controleaza mai multe BTS-uri  Consta dintr-o entitatea de control si din una pentru un protocol inteligent  Functiile BSC – Asigura managementul resursei radio – Asigneaza si elibereaza frecvente si sloturi de timp pentru toate MS-urile din aria sa de acivitate/actiune – Realocarea de frecvente pentru toate celulele – Realizeaza protocolul de predare primire a unei MS – Semnale de sincronizare a timpului si frecventei la BTS-uri – Masurarea timpului de intirziere si notificarea unui MS la BTS – Mangementul puterii la BTS si MS 154
  • 155. Mobile Switching Center (MSC)  Comuta nodul la un PLMN(Public/Private Land Mobile Network)  Aloca resursa radio (RR) – Realizeaza primirea predarea unei MS ublic  Mobilitatea subscrierii – Inregistrarea locatiei de subscriere  Pot fi citeva MSC pentru un PLMN 155
  • 156. Gateway MSC (GMSC)  Conecteaza reteaua mobila la reteaua fixa – Punct de intrare la un PLMN  Usual unul pentru PLMN  Cere informatia de rutare de la HLR si ruteaza conexiunea la MSC-ul local 156
  • 157. Canalul fizic  Legatura ascendenta/descendenta (Uplink/Downlink) la 25MHz – 890 -915 MHz pentru legatura ascendenta – 935 - 960 MHz pentru legatura descendenta  Combinatie de FDMA si TDMA – FDMA – 124 canale a 200 kHz – 200 kHz banda de garda – TDMA – Sit de biti/Avalansa(Burst)  Modulatia utilizata Gaussian Minimum Shift Keying (GMSK) 157
  • 158. 158
  • 159. Bursts  Building unit of physical channel  Types of bursts – Normal – Synchronization – Frequency Correction – Dummy – Access 159
  • 160. Normal Burst  Normal Burst – 2*(3 head bit + 57 data bits + 1 signaling bit) + 26 training sequence bit + 8.25 guard bit – Used for all except RACH, FSCH & SCH 160
  • 161. Air Interface: Logical Channel  Traffic Channel (TCH)  Signaling Channel – Broadcast Channel (BCH) – Common Control Channel (CCH) – Dedicated/Associated Control Channel (DCCH/ACCH) 161
  • 162. 162
  • 163. Traffic Channel  Transfer either encoded speech or user data  Bidirectional  Full Rate TCH – Rate 22.4kbps – Bm interface  Half Rate TCH – Rate 11.2 kbps – Lm interface 163
  • 164. Full Rate Speech Coding  Speech Coding for 20ms segments – 260 bits at the output – Effective data rate 13kbps  Unequal error protection – 182 bits are protected • 50 + 132 bits = 182 bits – 78 bits unprotected  Channel Encoding – Codes 260 bits into (8 x 57 bit blocks) 456 bits  Interleaving – 2 blocks of different set interleaved on a normal burst (save damages by error bursts) 164
  • 165. Speech 20 ms 20 ms Speech Coder Speech Coder 260 260 Channel Encoding Channel Encoding 456 bit 456 bit Interleaving 1 2 3 4 5 6 7 8 NORMAL BURST 3 57 1 26 1 57 3 8.25 Out of first 20 ms 165 Out of second 20ms
  • 166. Traffic Channel Structure for Full Rate Coding Slots 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 Bursts for Users allocated in Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 26 T T T T T T T T T T T T T S T T T T I T = Traffic S = Signal( contains information about the signal strength in neighboring cells) 166
  • 167. Slots 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 Burst for one users 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 26 T T T T T T S T T Bursts for another users allocated in alternate T 1 2 Slots4 5 6 T 3 7 8 9 10 11 12 13 14 15 16 17 26 T T T T T T T T S = T Traffic Channel Structure for Half Rate Coding 167
  • 168. BCCH  Broadcast Control Channel (BCCH) – BTS to MS – Radio channel configuration – Current cell + Neighbouring cells – Synchronizing information – Frequencies + frame numbering – Registration Identifiers – LA + Cell Identification (CI) + Base Station Identity Code (BSIC) 168
  • 169. FCCH & SCH  Frequency Correction Channel – Repeated broadcast of FB  Synchronization Channel – Repeated broadcast of SB – Message format of SCH PLMN color BS color T1 Superframe T2 multiframe T3 block frame 3 bits 3 bits index 11 bits index 11 bits index 3bits BSIC 6 bits" FN 19bits 169
  • 170. RACH & SDCCH  Random Access Channel (RACH) – MS to BTS – Slotted Aloha – Request for dedicated SDCCH  Standalone Dedicated Control Channel (SDCCH) – MS  BTS – Standalone; Independent of TCH 170
  • 171. AGCH & PCH Access Grant Channel (AGCH) – BTS to MS – Assign an SDCCH/TCH to MS  Paging Channel (PCH) – BTS to MS – Page MS 171
  • 172. SACCH & FACCH  Slow Associated Control Channel (SACCH) – MS  BTS – Always associated with either TCH or SDCCH – Information – Optimal radio operation; Commands for synchronization – Transmitter power control; Channel measurement – Should always be active; as proof of existence of physical radio connection  Fast Associated Control Channel (FACCH) – MS  BTS – Handover – Pre-emptive multiplexing on a TCH, Stealing Flag (SF) 172
  • 173. Example: Incoming Call Setup MS  BSS/MSC ------ Paging request (PCH) MS  BSS/MSC ------ Channel request (RACH) MS  BSS/MSC ------ Immediate Assignment (AGCH) MS  BSS/MSC ------ Paging Response (SDCCH) MS  BSS/MSC ------ Authentication Request (SDCCH) MS  BSS/MSC ------ Authentication Response (SDCCH) MS  BSS/MSC ------ Cipher Mode Command (SDCCH) MS  BSS/MSC ------ Cipher Mode Compl. (SDCCH) MS  BSS/MSC ------ Setup (SDCCH) MS  BSS/MSC ------ Call Confirmation (SDCCH) MS  BSS/MSC ------ Assignment Command (SDCCH) MS  BSS/MSC ------ Assignment Compl. (FACCH) MS  BSS/MSC ------ Alert (FACCH) MS  BSS/MSC ------ Connect (FACCH) MS  BSS/MSC ------ Connect Acknowledge (FACCH) MS BSS/MSC ------ Data (TCH) 173
  • 174. Select the channel with Power On Scan Channels, highest RF level among monitor RF levels the control channels Scan the channel for the FCCH Select the channel with NO next highest Rf level Is from FCCH detected? the control list. YES Scan channel for SCH NO Is SCH detected? YES Read data from BCCH and determine is it BCCH? From the channel data NO Is update the control the current BCCH channel list channel included? YES Camp on BCCH and start decoding 174
  • 175. Adaptive Frame Synchronization  Timing Advance  Advance in Tx time corresponding to propagation delay  6 bit number used; hence 63 steps  63 bit period = 233 micro seconds (round trip time) – 35 Kms 175
  • 176. 176
  • 177. GSM: Channel Mapping Summary  Logical channels – Traffic Channels; Control Channels  Physical Channel – Time Slot Number; TDMA frame; RF Channel Sequence  Mapping in frequency – 124 channels, 200KHz spacing  Mapping in time – TDMA Frame, Multi Frame, Super Frame, Channel – Two kinds of multiframe: – 26-frame multiframe; usage -Speech and Data – 51-frame multiframe; usage -Signalling 177