Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Research on quantum algorithms 6563593

35 views

Published on

QuSoft is the new Dutch research center for quantum software. Its mission is to develop new protocols, algorithms and applications that can be run on small and medium-sized prototypes of a quantum computer. The main focus of QuSoft is on the development of quantum software, which requires fundamentally different techniques and approaches from conventional software.

QuSoft was launched by CWI, UvA and VU in December 2015 and builds on the institutions’ excellent track record in quantum computing and quantum information.

http://www.qusoft.org

Published in: Science
  • Be the first to comment

  • Be the first to like this

Research on quantum algorithms 6563593

  1. 1. Research on Quantum Algorithms at the Institute for Quantum Information and Matter J. Preskill, L. Schulman, Caltech preskill@caltech.edu / www.iqim.caltech.edu/ Objective Objective Approach • Improved rigorous estimates of thresholds for fault-tolerant quantum computation. • Quantum algorithms beyond the hidden subgroup paradigm. • Quantum and classical simulation methods for quantum many-body systems. • New approaches to physically robust quantum computation. • Quantum algorithms for simulating local quantum systems. • Novel applications of the quantum Fourier transform and other transforms. • Customizing quantum fault tolerance for physically motivated noise models. • Schemes for physically robust quantum storage and processing. • Characterizing Hamiltonian complexity. • Quantum-resistant classical cryptography. Status • Quantum circuit obfuscation schemes based on the connections between quantum circuits and braids. • Proposed quantum-resistant cryptosystem based on hardness of solving systems of quadratic equations. • Efficient magic-state distillation protocol using a new class of triorthogonal quantum codes. • Scheme for performing protected quantum gates based on a continuous-variable quantum codes. • Sufficient condition on noise correlations for scalable quantum computing. Magic state distillation with low overhead.
  2. 2. • Research plan for the next 12 months – FY13-14 - Quantum algorithms for simulating quantum field theories with gauge fields and massless particles. - Quantum algorithms for simulating thermalization of quantum systems. - Quantum algorithms for interpolating band-limited functions on continuous groups. - Renormalization group analysis of three-dimensional topological quantum codes. - Probability distributions that can be sampled efficiently quantumly but not classically. - Structurally inhomogeneous tensor network states for strongly disordered systems. • Long term objectives - Bring large-scale quantum computers closer to realization by proposing and analyzing new schemes for protecting quantum systems from noise. - Conceive, develop, and analyze new applications of quantum computing to physics and mathematics. • Progress on last year’s objectives – FY12-13 - Quantum algorithms for simulating particle collisions in fermionic quantum field theories. - Proposed quantum-resistant cryptosystem based on hardness of solving systems of quadratic equations. - Quantum circuit obfuscation schemes based on the connections between quantum circuits and braids. - Efficient magic-state distillation protocol using a new class of triorthogonal quantum codes. - Efficient algorithm for testing stability of two-dimensional tensor-network states vs. local perturbations. - Scheme for performing protected quantum gates based on a continuous-variable quantum codes. - Sufficient condition on noise correlations for scalable quantum computing. - Near-optimal dynamical decoupling schemes for multi-level quantum systems. - New class of highly entangled many-body states which can be efficiently simulated. Research on Quantum Algorithms at the Institute for Quantum Information and Matter J. Preskill, L. Schulman, Caltech preskill@caltech.edu / www.iqim.caltech.edu/
  3. 3. Students: Michael Beverland Peter Brooks → HRL Bill Fefferman Jeongwan Haah → MIT Isaac Kim → Perimeter Alex Kubica Shaun Maguire Evgeny Mozgunov Sujeet Shukla Undergrads (4 in 2012, 3 in 2013) Visitors: Many Postdocs arriving 2013-14: Mario Berta (ETH) Andrew Essin (Colorado) O. Landon-Cardinal (Sherbrooke) Kristan Temme (MIT) Faculty: John Preskill Alexei Kitaev Leonard Schulman Gil Refael Faculty Associates: Todd Brun Steven van Enk Sandy Irani Postdocs: Gorjan Alagic Glen Evenbly Alexey Gorshkov → NIST Zhengcheng Gu → Perimeter Nate Lindner → Technion Spiros Michalakis Fernando Pastawski Ling Wang Beni Yoshida Daniel Lidar Kirill Shtengel Research on Quantum Algorithms at the IQIM
  4. 4. Some research themes at the IQIM • Power of quantum computing. Simulating quantum field theories, preparing thermal states, obfuscating quantum circuits with braids, quantum-resistant public key based on multivariate quadratic equations, quantum algorithms for interpolating band-limited functions on continuous groups, probability distributions that can be sampled efficiently quantumly but not classically. •Fault-tolerant quantum computing. Magic-state distillation protocol using triorthogonal quantum codes, RG analysis of self-correcting quantum memory in 3D, universal topological quantum computing with realistic materials, protected gates for superconducting qubits, universal dynamical decoupling, asymmetric Bacon-Shor codes for protection against biased noise. • Experiment and implementation. Attractive photons in a quantum nonlinear mediua, Kitaev honeycomb and other exotic spin models with polar molecules, realizing fractional Chern insulators with dipolar spins. • Quantum many-body physics. Classifying locally definable quantum phases, area law and sub-exponential algorithm for 1D systems, fractional Majorana fermions at the edges of abelian quantum Hall states, class of highly entangled many-body states which can be efficiently simulated, structurally inhomogeneous tensor network states for strongly disordered systems.
  5. 5. Quantum algorithms for quantum field theories -- Feynman diagrams have limited precision, particularly at strong coupling. -- Classical lattice methods can compute static properties, but cannot simulate dynamics A quantum computer can simulate particle collisions, even at high energy and strong coupling, using resources (number of qubits and gates) scaling polynomially with precision, energy, and number of particles. -- Estimate errors due to regulating (spatial lattice and approximating continuous variable fields by qubits). -- Efficient procedure for preparing (strongly-coupled) vacuum and initial wave packet states, simulating time evolution, measuring final state. Does the quantum circuit model capture the computational power of Nature? What about quantum gravity? Jordan, Lee, Preskill
  6. 6. Simulating quantum field theory Input: a list of incoming particle momenta (particles are actually wave packets with some momentum spread). Output: a list of outgoing particle momenta. Goal is to sample accurately from the distribution of final state particles that would be produced in a high energy collision in a (strongly coupled) field theory. Previous work: Consider a self-coupled scalar field in d = 1, 2, 3, spatial dimensions. Digitize field at each lattice point using nb qubits, where nb scales logarithmically with energy and accuracy. Procedure: (1) Prepare free field vacuum. (2) Prepare free field wavepackets. (3) Adiabatically turn on the coupling constant (t). (4) Evolve for time T using interacting Hamiltonian H. (5) Adiabatically turn off coupling (6) Measure field modes of free theory. Need to discretize the problem, and keep track of resulting errors. Jordan, Lee, Preskill
  7. 7. Simulating fermionic quantum field theory Input: a list of incoming particle momenta (particles are actually wave packets with some momentum spread). Output: a list of outgoing particle momenta. Goal is to sample accurately from the distribution of final state particles that would be produced in a high energy collision in a (strongly coupled) field theory. This year’s work: Consider a self-coupled fermionic field in d = 1 spatial dimensions (e.g., Gross-Neveu model). Procedure: (1) Prepare uncoupled fermion modes. (2) Adiabatically turn on nearest neighbor coupling between modes. (3) Adiabatically turn on the coupling constant (t). (4) Excite spatially localized wave packets with time-dependent sources. (5) Measure charge and postselect on detecting one particle. (6) Evolve for time T using interacting Hamiltonian H. (7) Nondestructively measure energy and momentum of outgoing particles. Need to discretize the problem, and keep track of resulting errors. Jordan, Lee, Preskill
  8. 8. Simulating fermionic quantum field theory Free fermion vacuum is not Gaussian – prepare it by adiabatically turning on nearest neighbor coupling between modes. Fermi minus sign: Use Bravyi-Kitaev encoding at cost O(log L). When a fermionic gate is applied, relative sign of |0> and |1> depends on occupation numbers of other modes (e.g. the number of occupied modes to the left of the given site). We could represent fermion operators as (Jordan-Wigner) nonlocal string operators at cost O(L), or we could store the partial sums of mode occupation numbers, but then updates have cost O(L). Better: cleverly choose partial sums which allow computation of (-1)’s in O(log L) and can be updated in time O(log L). Exciting wave packets: Modulate source spatially and temporally to match one particle states. Make the source weak to avoid creating more than one particle, but it usually produces nothing. Measure and abort if not particle created (okay for a collision of a constant number of particles). Advantage over previous method (in which coupling ramps on after wavepacket created): works for bound states. Jordan, Lee, Preskill
  9. 9. Simulating fermionic quantum field theory Procedure: (1) Prepare uncoupled fermion modes. (2) Adiabatically turn on nearest neighbor coupling between modes. (3) Adiabatically turn on the coupling constant (t). (4) Excite spatially localized wave packets with time-dependent sources. (5) Measure charge and postselect on detecting one particle. (6) Evolve for time T using interacting Hamiltonian H. (7) Nondestructively measure energy and momentum of outgoing particles. Need to discretize the problem, and keep track of resulting errors. Cost is dominated by the adiabatic preparation of the vacuum. Adiabaticity enforces turn-on time Jordan, Lee, Preskill ( )4 1/T O a= Ú where a is the lattice spacing and is the error. Using a high -order Trotter approximation, the number of gates needed is: The error due to nonzero lattice spacing scales as ~ a, hence cost scales with error as (seems pessimistic) ( )1 (1) ( / ) o G O TL a + = ( )6 (1) (1/ ) o G O + = Ú
  10. 10. Simulating quantum field theory Future plans: Massless particles (infrared safe observables). Gauge fields (start with strong coupling limit). Ground state preparation by cooling. Nonzero temperature and chemical potential. Simulate standard model of particle physics in BQP. Quantum gravity?
  11. 11. Obfuscation Take a circuit C and produce another circuit O(C), so that: 1. functionality is preserved; 2. size is not much bigger (say polynomial); 3. it’s hard to “reverse-engineer” O(C) (at a minimum, O(C) -> C is hard). Can we have an algorithm that does this for all circuits? State of affairs in research – lots of motivation (software/hardware copy protection, homomorphic encryption, turning private key schemes into public key schemes, etc.) – known formalizations of (3) are all too hard: • O(C) no more useful than a black box that performs C? (impossible, Barak et al ’01) • O(C1) indistinguishable from O(C2) for equivalent C1, C2? (collapses PH, Goldwasser Rothblum ’07) – little is known about quantum obfuscation • are there classical algorithms for obfuscating quantum circuits? • are there quantum states that allow us to do obfuscated computation? G. Alagic, T. Jeffery, S. Jordan
  12. 12. Quantum Obfuscation 1. What if we ask for a slightly weaker condition (3)? 2. Can we obfuscate quantum circuits? Results [Alagic Jeffery Jordan ’13] – efficient classical algorithms for obfuscating both quantum and classical circuits – “weaker” condition 3: indistinguishability under a subset of the set of all circuit relations Core idea – if we had an efficient canonical form for circuits (a coNP-hard problem), we would satisfy Goldwasser-Rothblum trivially – but topological quantum computation gives us a pretty good mapping and braids do have efficient canonical forms! – in fact, this mapping exists for classical reversible circuits too, if we use a different representation of the braid group – If Bob claims to have a quantum computer, Alice can propose that Bob execute a quantum circuit that obfuscates a classical circuit, where Alice can easily check the answer. quantum circuits braids G. Alagic, T. Jeffery, S. Jordan
  13. 13. Approximation theory on groups The Discrete Fourier Transform (DFT) – basis of countless proofs, algorithms, signal processing tasks, etc. – the fast classical (FFT) algorithms for computing the DFT are very useful in practice – their quantum analogues (QFT) are exponentially faster (in a certain sense) and are a basis for amazing things like Shor’s algorithm What if the group is continuous instead of finite (say the circle or SU(2))? – finitely many sums becomes infinitely many integrals. – two simplifications: only consider band-limited f (doesn’t oscillate too much), and sample the function at a nicely spaced finite set of points – for the circle, this boils down to “discretize and use DFT” G. Alagic, A. Russell, L. Schulman
  14. 14. Approximation theory on groups New feature of continuous case: We can use Fourier inversion to reconstruct the values of the function anywhere on the group. Why study the continuous non-abelian case? – signals in practice might be continuous instead of discrete – we care about nonabelian spaces (e.g., spherical harmonics, SU(2)) – we need more quantum-algorithmic primitives for exponential speedups Results [Alagic Russell Schulman 2013] – a theorem about reconstructing band-limited functions on compact groups • setting: any compact group • input: random samples of a band-limited function f • output: the list of Fourier coefficients of f – a number of samples cubic in the band limit is sufficient for a good estimate – the reconstruction is inner-product-preserving in the limit
  15. 15. (Multivariate Quadratic + Code)-Based Cryptosystem Post-Quantum: honest players are classical and polynomial-time, but adversary might have a quantum computer. Adversary knows public key, needs to solve a hard problem to decrypt (invert a one-way function). Private key provides a trap door for efficient decryption. Preferably based on a problem which is (average case) hard. Problem has structure which enables the trap door, but is hidden from the adversary. Preferably a simple scheme, so potential attacks are obvious --- no well hidden vulnerabilities. Schulman
  16. 16. Post-quantum cryptography Number theoretic (abelian hidden subgroup problems): vulnerable to quantum attacks. RSA, elliptic curve, Diffie-Hellman, etc. Lattice cryptosystems: based on hardness of shortest/closest vector problems. Worst-case to average case reduction. Reduce to dihedral (nonabelian) hidden subgroup. Reasons for concern: -- Single-register coset measurements info. theoretically sufficient. -- Kuperberg algorithm: Time McEliece: based on hardness of decoding general linear EC codes. Public key C = M G P G generates linear code, M is random matrix, P is random permutation. Encode v as vC + correctable errors (weight t). Code is efficiently decodable, and has to be carefully chosen. New proposal: a code-based scheme in which the scrambled code is not public. ( ) 2O n Schulman
  17. 17. (Multivariate Quadratic + Code)-Based Cryptosystem Public: three-index 2N 2N L binary tensor R is random 2N 2N K binary tensor , {a, b} are 2L random length-(2N) vectors, and C is generator of a scrambled length-L efficiently decodable linear code, which can correct most errors of weight for some > ¼ L. Clear text: Length-N binary string x. Encrypted text: Length-L binary string y (L > 8N). Append length-N r, s to x. where yl (error))=1 with probability ¼ (product of two random bits). Decryption: Decode to find yl (error)). Each l for which yl (error))=1 provides linear equations for xr and xs. 2N such equations suffice (hence L > 8N). Security: Here the scrambled code is hidden by the noise. (Known attacks on McEliece use the publicly known scrambled code.) Adversary needs to solve a random system of quadratic equations to find x, if unable to infer structure of the public tensor T. To ensure hardness of tensor decomposition, dual of C should have positive fractional distance. (code) (error) ( ) ( )l ij i j ijk kl il jl l l k y xr xs R C a b y y é ù + = +ê ú ë û = å å Schulman ijl k ijk kl il jlT R C a b= +å
  18. 18. (Multivariate Quadratic + Code)-Based Cryptosystem -- Codes with the desired properties are not known. -- One way around this is to use higher-order tensors; e.g. with an 4-index tensor we can reduce the correctable error rate of C to 1/8 (still requiring the dual to have positive fractional distance), and then minimum distance decoding is feasible (but still no known codes). With an 7-index tensor the correctable error rate becomes 1/64, and suitable efficiently decodable codes have been constructed by Guruswami 2009. -- That means a larger public key, but the key size can be reduced somewhat by linearly hashing down the extra dimensions until their size is proportional to the security parameter. -- Basing security on the hardness of tensor decomposition is a new feature in public key cryptography. Schulman
  19. 19. Protected superconducting qubit ( )( )(2 ) exp (size)E f O cq» + - Two states localized near =0 and = are the basis states of a protected qubit. The barrier is high enough to suppress bit flips, and the stable degeneracy suppresses phase errors. Protection arises because the encoding of quantum information is highly nonlocal, and splitting of degeneracy scales exponentially with size of the device. Feigel’man & Ioffe Doucot & Vidal Kitaev “0-Pi qubit”: Physically robust encodings have been proposed using superconducting circuits containing Josephson junctions, for example the “0-Pi qubit”. The circuit’s energy E( ), as a function of the superconducting phase difference between its leads, is a periodic function with period to an excellent approximation. 0 Brooks, Kitaev, Preskill
  20. 20. exp 4 i Z pæ ö ç ÷ è ø For reliable quantum computing, we need not just very stable qubits, but also the ability to apply very accurate nontrivial quantum gates to the qubits. Accurate (Clifford group) phase gates can be applied to 0-Pi qubits by turning on and off the coupling between a qubit (or pair of qubits) and a harmonic oscillator (an LC circuit whose inductance is large in natural units). In principle the gate error becomes exponentially small as the inductance grows. The reliability of the gate arises from a continuous-variable quantum error- correcting code underlying its operation, in which a qubit is embedded in the infinite-dimensional Hilbert space of a harmonic oscillator. Coupling the 0-Pi qubit to the oscillator sends the oscillator on a state-dependent phase space excursion during which it acquires a geometric phase that is protected by the code. 0-Pi qubit 0 C L 2 / / (2 ) 1L C e k» W! " Protected phase gate Brooks, Kitaev, Preskill
  21. 21. exp 4 i Z pæ ö ç ÷ è ø Switch is really a tunable Josephson junction: ( ) 2 2 ( )cos 2 2 Q H J t C L j j q= + - - Under suitable adiabaticity conditions, closing the switch transforms a broad oscillator state (e.g. the ground state) into a grid state (approximate codeword). j D k-1 V(j) j 1 1 / switching time 1J C J LCw w- - = =! ! " 0-Pi qubit 0 C L 2 / / (2 ) 1L C e k» W! " Peaks are at even or odd multiples of p depending on whether q is 0 or p, i.e. on whether qubit is 0 or 1. Inner width squared is (JC)-1/2 and outer width is (L/C)1/2 Protected phase gate
  22. 22. ( ) ( ) 1/2 1/2 / 80 0 8 8 / J L C C JC t = = = | error ( )C P e+ñ calculable contribution to error due to diabatic effects and Q-space spreading
  23. 23. Large inductance j Manucharyan et al. 2009, Masluk et al. 2012, Bell et al. 2012 achieved ~ 20 with a chains of Josephson junctions. The inductance scales linearly with the length of the chain, but there are potential obstacles to building very long chains. Another possible approach is to exploit the large (kinetic) inductance in amorphous superconductors. ( )exp -(1/4) / .L CThe intrinsic error scales like Is / 80 reasonable?L C » What about universal quantum computation and measurement? -- If we can prepare and measure in the basis |0ñ ± |1ñ, a noisy p/4 single-qubit phase gate (F > .93), augmented by state distillation, suffices for fault-tolerant universality (Bravyi & Kitaev 2005). -- It is also okay if measurements are noisier than gates, as we can protect measurements using repetition (or coding) -- So if we can really do a two-qubit phase gate with high fidelity, that’s worth a lot!
  24. 24. Magic State Distillation with Improved Overhead -- In typical protocols for fault-tolerant quantum computing based on stabilizer codes, Clifford operations (e.g. CNOT gates and 90 degree single-qubit rotations) have relatively low overhead cost. -- Overhead tends to be dominated by non-Clifford operations, such as 45 degree single-qubit rotations, Toffoli (controlled-controlled-NOT) gates, or controlled-controlled phase gates. -- For “magic-state distillation” protocols, we use codes such that the 45 degree rotation T is transversal. Triorthogonal codes admit such transversal logical gates. -- For logical non-Clifford gates with error rate , the cost scales like log (1/ ), and we would like to reduce the exponent . -- Exponent is = log(r) / log(a) if protocol yields one output copy for each r input copies, and reduces error from p to O(pa). -- New family of protocols asymptotically achieves = log(3) / log(2) ~ 1.6. Best previous protocol had been = log(5) / log(2) ~ 2.3. Bravyi, Haah
  25. 25. Triorthogonal matrix • A binary matrix where any pair of rows has even overlap and so does any triple. • E.g. • Even-weight rows shown in bold. • Number of odd-weight rows determines number k of encoded qubits in corresponding CSS code. • Family of codes with length n = 3k + 8. • Codes have distance d = 2.
  26. 26. Magic state distillation Encoder DesignedClifford X-syndromeMeas. Postselect0-synd. Decoder By a stabilizer code based on “triorthogonal matrices” Noisy magic states are represented by a stochastic application of Z-rotation Distills Pi/8-rotation magic state
  27. 27. Distillation cost improved • Using a new explicit family of triorthogonal matrices G(k), • Error rate improves as • Avg. # of input states to reach a target error rate is • Numerical optimization, combining various protocols. At Target error rate 10-12: -- 2-fold improvement from Meier-Eastin-Knill (1204.4221) -- 10-fold improvement from (original) Bravyi-Kitaev (2004) In plot, upper curve is Meier et al. Lower curve is new protocol.
  28. 28. Entanglement Renormalization • Local unitary transformation, – On nearest neighbors • factoring out trivial degrees of freedom. • Understand “long-range entanglement” Haah
  29. 29. Laurent polynomial representation of stabilizer code Hamiltonians • Local unitary = row operation • Trivial qubit = presence of sole 1 in a column • Coarse-graining = matrix expansion • Toric code maps to self in a coarse-graining step
  30. 30. Cubic code • Cubic code factorizes to itself plus another. The other factorizes into two copies of itself. (X-type stabilizers are shown.) 23 23 Coarse-graining step: A A + B B B + B
  31. 31. Branching MERA • Several branches in MERA • Proposed to described highly entangled critical systems. • Cubic code, a gapped spin model, turns out to fit. • Area law holds still, for being in 3D. Evenbly, Vidal (1210.1895)
  32. 32. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 t 0 1 2 3 0Y 1Y 2Y 3Y YºYT T Highly entangled quantum circuits (arXiv:1210.1895) 𝑆" ≈ 𝐿 Block entanglement entropy scaling L scales as the bulk of the block!
  33. 33. H H H= +! R Minimal Updates in Holography (arXiv:1307.0831) H D – dimensional Hamiltonian H H! y y! local change in Hamiltonian localized change in holographic description of ground state y UV IR z (D+1) – dimensional holographic description of its ground state R y! Minimal Updates modified Hamiltonian new ground state If we use a matrix-product state description, then a local change in the Hamiltonian may require us to modify tensors far away. With a holographic description, we need only modify the tensors within a causal code of bounded width. Evenbly
  34. 34. Tensor network states for disordered systems Evenbly
  35. 35. An area law and sub-exponential algorithm for 1D systems (Arad, Kitaev, Landau, Varzirani). Entanglement entropy of gapped 1D system scales linearly with reciprocol of spectal gap. An algorithm for approximating the ground state which runs in subexponential time. Finding the group of units in algebraic number rings of arbitrary degree (in progress, Eisentraeger, Hallgren, and Kitaev). Toward a uniformly polynomial algorithm that finds the period of a function on G = Rq for any q. Classifying locally definable quantum phases of matter (Kitaev). A definition of quantum phases with short-range entanglement, and a proposed topological classification of all such phases in any dimension. Kitaev
  36. 36. • Research plan for the next 12 months – FY12-13 - Extend algorithms for simulating quantum field theories to fermions, gauge fields, massless particles. - Quantum algorithms for preparing the Gibbs states of local quantum systems at nonzero temperature. - Develop efficient band-limited quantum Fourier transforms over Lie groups. - Quantum circuit obfuscation schemes based on the connections between quantum circuits and braids. - Near-optimal dynamical decoupling schemes for multi-level quantum systems. - Classification of phases for “locally definable” quantum systems in arbitrary dimensions. • Long term objectives - Bring large-scale quantum computers closer to realization by proposing and analyzing new schemes for protecting quantum systems from noise. - Conceive, develop, and analyze new applications of quantum computing to physics and mathematics. • Progress on last year’s objectives – FY11-12 - Quantum algorithms for simulating particle collisions in strongly-coupled quantum field theories. - Proposed trap-door one-way functions based on tensor problems. - Quantum algorithms for approximating invariants of triangulated manifolds by tensor contraction. - Classical certificates for frustration-free ground states of commuting Hamiltonians on square lattices. - Estimating fidelity using a number of Pauli operator expectation values independent of system size. - Enhanced memory time for three-dimensional quantum memories without string operators. - Performance analysis for fault-tolerant quantum computing based on asymmetric Bacon-Shor codes. - Nonlocal order parameters for symmetry-protected phases in one dimension. - Studies of resonating valence bond (RVB) states using the PEPS formalism. Research on Quantum Algorithms at the Institute for Quantum Information J. Preskill, A. Kitaev, L. Schulman, Caltech preskill@caltech.edu / www.iqi.caltech.edu/
  37. 37. • Research plan for the next 12 months – FY13-14 - Quantum algorithms for simulating quantum field theories with gauge fields and massless particles. - Quantum algorithms for simulating thermalization of quantum systems. - Quantum algorithms for interpolating band-limited functions on continuous groups. - Renormalization group analysis of three-dimensional topological quantum codes. - Probability distributions that can be sampled efficiently quantumly but not classically. - Structurally inhomogeneous tensor network states for strongly disordered systems. • Long term objectives - Bring large-scale quantum computers closer to realization by proposing and analyzing new schemes for protecting quantum systems from noise. - Conceive, develop, and analyze new applications of quantum computing to physics and mathematics. • Progress on last year’s objectives – FY12-13 - Quantum algorithms for simulating particle collisions in fermionic quantum field theories. - Proposed quantum-resistant cryptosystem based on hardness of solving systems of quadratic equations. - Quantum circuit obfuscation schemes based on the connections between quantum circuits and braids. - Efficient magic-state distillation protocol using a new class of triorthogonal quantum codes. - Efficient algorithm for testing stability of two-dimensional tensor-network states vs. local perturbations. - Scheme for performing protected quantum gates based on a continuous-variable quantum codes. - Sufficient condition on noise correlations for scalable quantum computing. - Near-optimal dynamical decoupling schemes for multi-level quantum systems. - New class of highly entangled many-body states which can be efficiently simulated. Research on Quantum Algorithms at the Institute for Quantum Information and Matter J. Preskill, L. Schulman, Caltech preskill@caltech.edu / www.iqim.caltech.edu/

×