These notes describe a generalised data integration architecture framework and set of capabilities.
With many organisations, data integration tends to have evolved over time with many solution-specific tactical approaches implemented. The consequence of this is that there is frequently a mixed, inconsistent data integration topography. Data integrations are often poorly understood, undocumented and difficult to support, maintain and enhance.
Data interoperability and solution interoperability are closely related – you cannot have effective solution interoperability without data interoperability.
Data integration has multiple meanings and multiple ways of being used such as:
- Integration in terms of handling data transfers, exchanges, requests for information using a variety of information movement technologies
- Integration in terms of migrating data from a source to a target system and/or loading data into a target system
- Integration in terms of aggregating data from multiple sources and creating one source, with possibly date and time dimensions added to the integrated data, for reporting and analytics
- Integration in terms of synchronising two data sources or regularly extracting data from one data sources to update a target
- Integration in terms of service orientation and API management to provide access to raw data or the results of processing
There are two aspects to data integration:
1. Operational Integration – allow data to move from one operational system and its data store to another
2. Analytic Integration – move data from operational systems and their data stores into a common structure for analysis