Successfully reported this slideshow.
Your SlideShare is downloading. ×

2022年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2022. 12. 1)

Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad
Ad

Check these out next

1 of 121 Ad

2022年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2022. 12. 1)

Download to read offline

関西大学総合情報学部・応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2022a/AMA/

関西大学総合情報学部・応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2022a/AMA/

Advertisement
Advertisement

More Related Content

More from Akira Asano (20)

Recently uploaded (20)

Advertisement

2022年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2022. 12. 1)

  1. 1. 浅野 晃 関西大学総合情報学部 2022年度秋学期 応用数学(解析) 第3部・微分方程式に関する話題 生存時間分布と半減期 第10回
  2. 2. 2
  3. 3. 2 今日は,「寿命」を扱う微分方程式🤔🤔
  4. 4. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら
  5. 5. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」
  6. 6. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという
  7. 7. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという 寿命がいくらである確率がどのくらいであるかを 表すのが[確率分布]
  8. 8. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t)
  9. 9. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
  10. 10. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
  11. 11. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
  12. 12. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
  13. 13. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
  14. 14. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
  15. 15. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間
  16. 16. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合
  17. 17. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合 [ハザード関数]
  18. 18. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t)
  19. 19. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率
  20. 20. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
  21. 21. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
  22. 22. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
  23. 23. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数 T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数] 生存関数は,ある時間がたったとき,まだ生きている確率
  24. 24. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t)
  25. 25. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt
  26. 26. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t)
  27. 27. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt
  28. 28. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′(t)
  29. 29. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T ≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′(t) すなわち f(t) = F′(t)
  30. 30. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  31. 31. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  32. 32. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  33. 33. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  34. 34. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  35. 35. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  36. 36. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  37. 37. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  38. 38. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  39. 39. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  40. 40. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  41. 41. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  42. 42. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  43. 43. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
  44. 44. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
  45. 45. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
  46. 46. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
  47. 47. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F (t)
  48. 48. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t)
  49. 49. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t)
  50. 50. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t)
  51. 51. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t)
  52. 52. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t)
  53. 53. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t)
  54. 54. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t) S (t) = (1 − F(t)) = −F (t) = −f(t)
  55. 55. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t) S (t) = (1 − F(t)) = −F (t) = −f(t)
  56. 56. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T t) F (t) (確率密度関数) f(t) = F(t) = f(t) S(t) l(t) S(t) = P(T t) S (t) = (1 − F(t)) = −F (t) = −f(t) 以上から l(t) = − S(t) S(t) という微分方程式が得られる
  57. 57. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t))
  58. 58. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分)
  59. 59. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C
  60. 60. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1
  61. 61. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから
  62. 62. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0
  63. 63. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0
  64. 64. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0
  65. 65. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1
  66. 66. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0
  67. 67. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
  68. 68. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
  69. 69. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S(t) S(t) = − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0 ハザード関数と生存関数の関係
  70. 70. 10
  71. 71. 10 ワイブル分布と指数分布📈📈
  72. 72. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
  73. 73. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入
  74. 74. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p )
  75. 75. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p )
  76. 76. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p ) 微積分の関係
  77. 77. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p ) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p )
  78. 78. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 この形の累積分布関数をもつ確率分布を[ワイブル分布]とよぶ ハザード関数を l(t) = λp(λt)p−1 と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1 du = exp − [(λu)p ]u=t u=0 = exp (−(λt)p ) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p )
  79. 79. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1
  80. 80. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる
  81. 81. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる
  82. 82. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは,
  83. 83. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正
  84. 84. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正
  85. 85. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
  86. 86. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
  87. 87. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障]
  88. 88. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは,
  89. 89. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負
  90. 90. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
  91. 91. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
  92. 92. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t) = λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 p 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる [初期故障]
  93. 93. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 13 t F(t) F(t) = 1 – e–t4 F(t) = 1 – e–t2 経過時間 累積分布関数 (ある時刻までに死亡・ 故障したものの割合) p = 2 の場合と p = 4 の場合 どちらも摩耗故障(時間につれて故障しやすくなる) p = 4 のほうが,急激に故障が増える
  94. 94. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する
  95. 95. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p )
  96. 96. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる
  97. 97. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ)
  98. 98. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y
  99. 99. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y X
  100. 100. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y X Y = p(X + log λ)
  101. 101. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) = exp (−(λt)p ) より 1 S(t) = exp ((λt)p ) log log 1 S(t) = log {log (exp ((λt)p ))} 両辺の対数を2回とる = log {(λt)p } = p(log t + log λ) Y X Y = p(X + log λ) 時刻を上の X ,その時刻での生存割合を上の Y に変換してプロット →並びを近似する直線の傾きが p
  102. 102. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1
  103. 103. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 ハザード関数は l(t) = λ
  104. 104. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 ハザード関数は l(t) = λ
  105. 105. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ
  106. 106. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
  107. 107. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
  108. 108. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する
  109. 109. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合 l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する ハザード関数が一定で,指数分布にしたがう
  110. 110. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定
  111. 111. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする t t′
  112. 112. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t)
  113. 113. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt
  114. 114. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt
  115. 115. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt
  116. 116. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt 対数をとる
  117. 117. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる
  118. 118. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる
  119. 119. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる t によらず一定
  120. 120. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を とする t t′ S(t ) = 1 2 S(t) S(t) = e−λt e−λt = 1 2 e−λt −λt = − log 2 − λt t − t = log 2 λ 対数をとる t によらず一定 [半減期]
  121. 121. 17 2022年度秋学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 17 集団中の個体の数が 死亡・故障によって減少して行く この現象を表す 微分方程式 解に仮定を持ち込むことで, ワイブル分布,指数分布といった 「死亡・故障による現象のモデル」が導かれる

×