Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

2 d transformations by amit kumar (maimt)

32,860 views

Published on

2D Transformations by Amit Kumar (MAIMT)

Published in: Education, Business, Technology
  • Best dissertation help you can get, thank god a friend suggested me ⇒⇒⇒WRITE-MY-PAPER.net ⇐⇐⇐ otherwise I could have never completed my dissertation on time.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • My friend sent me a link to to tis site. This awesome company. They wrote my entire research paper for me, and it turned out brilliantly. I highly recommend this service to anyone in my shoes. ⇒ www.HelpWriting.net ⇐.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • My brother found Custom Writing Service ⇒ www.HelpWriting.net ⇐ and ordered a couple of works. Their customer service is outstanding, never left a query unanswered.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • DOWNLOAD THIS BOOKS INTO AVAILABLE FORMAT (2019 Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download Full EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download Full doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download PDF EBOOK here { https://soo.gd/irt2 } ......................................................................................................................... Download EPUB Ebook here { https://soo.gd/irt2 } ......................................................................................................................... Download doc Ebook here { https://soo.gd/irt2 } ......................................................................................................................... ......................................................................................................................... ................................................................................................................................... eBook is an electronic version of a traditional print book THIS can be read by using a personal computer or by using an eBook reader. (An eBook reader can be a software application for use on a computer such as Microsoft's free Reader application, or a book-sized computer THIS is used solely as a reading device such as Nuvomedia's Rocket eBook.) Users can purchase an eBook on diskette or CD, but the most popular method of getting an eBook is to purchase a downloadable file of the eBook (or other reading material) from a Web site (such as Barnes and Noble) to be read from the user's computer or reading device. Generally, an eBook can be downloaded in five minutes or less ......................................................................................................................... .............. Browse by Genre Available eBooks .............................................................................................................................. Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, ......................................................................................................................... ......................................................................................................................... .....BEST SELLER FOR EBOOK RECOMMEND............................................................. ......................................................................................................................... Blowout: Corrupted Democracy, Rogue State Russia, and the Richest, Most Destructive Industry on Earth,-- The Ride of a Lifetime: Lessons Learned from 15 Years as CEO of the Walt Disney Company,-- Call Sign Chaos: Learning to Lead,-- StrengthsFinder 2.0,-- Stillness Is the Key,-- She Said: Breaking the Sexual Harassment Story THIS Helped Ignite a Movement,-- Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones,-- Everything Is Figureoutable,-- What It Takes: Lessons in the Pursuit of Excellence,-- Rich Dad Poor Dad: What the Rich Teach Their Kids About Money THIS the Poor and Middle Class Do Not!,-- The Total Money Makeover: Classic Edition: A Proven Plan for Financial Fitness,-- Shut Up and Listen!: Hard Business Truths THIS Will Help You Succeed, ......................................................................................................................... .........................................................................................................................
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • DOWNLOAD THAT BOOKS INTO AVAILABLE FORMAT (2019 Update) ......................................................................................................................... ......................................................................................................................... Download Full PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download Full EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download Full doc Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download PDF EBOOK here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download EPUB Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... Download doc Ebook here { http://bit.ly/2m6jJ5M } ......................................................................................................................... ......................................................................................................................... ................................................................................................................................... eBook is an electronic version of a traditional print book that can be read by using a personal computer or by using an eBook reader. (An eBook reader can be a software application for use on a computer such as Microsoft's free Reader application, or a book-sized computer that is used solely as a reading device such as Nuvomedia's Rocket eBook.) Users can purchase an eBook on diskette or CD, but the most popular method of getting an eBook is to purchase a downloadable file of the eBook (or other reading material) from a Web site (such as Barnes and Noble) to be read from the user's computer or reading device. Generally, an eBook can be downloaded in five minutes or less ......................................................................................................................... .............. Browse by Genre Available eBooks .............................................................................................................................. Art, Biography, Business, Chick Lit, Children's, Christian, Classics, Comics, Contemporary, Cookbooks, Manga, Memoir, Music, Mystery, Non Fiction, Paranormal, Philosophy, Poetry, Psychology, Religion, Romance, Science, Science Fiction, Self Help, Suspense, Spirituality, Sports, Thriller, Travel, Young Adult, Crime, Ebooks, Fantasy, Fiction, Graphic Novels, Historical Fiction, History, Horror, Humor And Comedy, ......................................................................................................................... ......................................................................................................................... .....BEST SELLER FOR EBOOK RECOMMEND............................................................. ......................................................................................................................... Blowout: Corrupted Democracy, Rogue State Russia, and the Richest, Most Destructive Industry on Earth,-- The Ride of a Lifetime: Lessons Learned from 15 Years as CEO of the Walt Disney Company,-- Call Sign Chaos: Learning to Lead,-- StrengthsFinder 2.0,-- Stillness Is the Key,-- She Said: Breaking the Sexual Harassment Story That Helped Ignite a Movement,-- Atomic Habits: An Easy & Proven Way to Build Good Habits & Break Bad Ones,-- Everything Is Figureoutable,-- What It Takes: Lessons in the Pursuit of Excellence,-- Rich Dad Poor Dad: What the Rich Teach Their Kids About Money That the Poor and Middle Class Do Not!,-- The Total Money Makeover: Classic Edition: A Proven Plan for Financial Fitness,-- Shut Up and Listen!: Hard Business Truths that Will Help You Succeed, ......................................................................................................................... .........................................................................................................................
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

2 d transformations by amit kumar (maimt)

  1. 1. 2D TRANSFORMATIONS COMPUTER GRAPHICS
  2. 3. <ul><li>“ Transformations are the operations applied to geometrical description of an object to change its position, orientation, or size are called geometric transformations”. </li></ul>2D Transformations
  3. 4. Why Transformations ? <ul><li>“ Transformations are needed to manipulate </li></ul><ul><li>the initially created object and to display the </li></ul><ul><li>modified object without having to redraw it .” </li></ul>
  4. 5. <ul><li>Translation </li></ul><ul><li>Rotation </li></ul>
  5. 6. <ul><li>Scaling </li></ul><ul><li>Uniform Scaling </li></ul><ul><li>Un-uniform Scaling </li></ul>
  6. 7. <ul><li>Reflection </li></ul><ul><li>Shear </li></ul>
  7. 8. Translation <ul><li>A translation moves all points in an object along the same straight-line path to new positions. </li></ul><ul><li>The path is represented by a vector, called the translation or shift vector. </li></ul><ul><li>We can write the components: </li></ul><ul><li>p ' x = p x + t x </li></ul><ul><li>p ' y = p y + t y </li></ul><ul><li>or in matrix form: </li></ul><ul><li>P ' = P + T </li></ul>x' y' x y t x t y = + P ' (8,6) t x t y P(2, 2) = 6 =4
  8. 9. Rotation <ul><li>A rotation repositions all points in an object along a circular path in the plane centered at the pivot point. </li></ul><ul><li>First, we’ll assume the pivot is at the origin. </li></ul> P P
  9. 10. Rotation <ul><li>Review Trigonometry </li></ul><ul><li>=> cos  = x/r , sin  = y/r </li></ul><ul><ul><li>x = r. c os  , y = r.sin  </li></ul></ul><ul><ul><li>=> cos (  +  ) = x’/r </li></ul></ul><ul><ul><li>x’ = r. cos (  +  ) </li></ul></ul><ul><ul><li>x’ = r.cos  cos  -r.sin  sin  </li></ul></ul><ul><ul><li>x’ = x.cos  – y.sin  </li></ul></ul><ul><ul><li>=>sin (  +  ) = y’/r </li></ul></ul><ul><ul><li>y’ = r. sin (  +  ) </li></ul></ul><ul><ul><li>y’ = r.cos  sin  + r.sin  cos  </li></ul></ul><ul><ul><li>y’ = x.sin  + y.cos  </li></ul></ul>  P(x,y) x y r x’ y’  P’(x’, y’) r Identity of Trigonometry
  10. 11. Rotation <ul><li>We can write the components: </li></ul><ul><li>p ' x = p x cos  – p y sin  </li></ul><ul><li>p ' y = p x sin  + p y cos  </li></ul><ul><li>or in matrix form: </li></ul><ul><li>P ' = R • P </li></ul><ul><li> can be clockwise (-ve) or counterclockwise (+ve as our example). </li></ul><ul><li>Rotation matrix </li></ul> P(x,y)  x y r x’ y’  P’(x’, y’)
  11. 12. Scaling <ul><li>Scaling changes the size of an object and involves two scale factors, S x and S y for the x- and y- coordinates respectively. </li></ul><ul><li>Scales are about the origin. </li></ul><ul><li>We can write the components: </li></ul><ul><li>p ' x = s x • p x </li></ul><ul><li>p ' y = s y • p y </li></ul><ul><li>or in matrix form: </li></ul><ul><li>P ' = S • P </li></ul><ul><li>Scale matrix as: </li></ul>P P’
  12. 13. Scaling <ul><li>If the scale factors are in between 0 and 1:---- </li></ul><ul><li> the points will be moved closer to the origin </li></ul><ul><li> the object will be smaller. </li></ul>P(2, 5) P’ <ul><li>Example : </li></ul><ul><ul><li>P(2, 5), S x = 0.5, S y = 0.5 </li></ul></ul>
  13. 14. Scaling <ul><li>If the scale factors are in between 0 and 1  the points will be moved closer to the origin  the object will be smaller. </li></ul><ul><li>If the scale factors are larger than 1  the points will be moved away from the origin  the object will be larger. </li></ul>P(2, 5) P’ <ul><li>Example : </li></ul><ul><ul><li>P(2, 5), S x = 0.5, S y = 0.5 </li></ul></ul>P’ <ul><li>Example : </li></ul><ul><ul><li>P(2, 5), S x = 2, S y = 2 </li></ul></ul>
  14. 15. Scaling <ul><li>If the scale factors are the same, S x = S y  uniform scaling </li></ul><ul><li>Only change in size (as previous example) </li></ul><ul><li>If S x  S y  differential scaling. </li></ul><ul><li>Change in size and shape </li></ul><ul><li>Example : square  rectangle </li></ul><ul><ul><li>P(1, 3), S x = 2, S y = 5 </li></ul></ul>P(1, 2) P’
  15. 16. General pivot point rotation <ul><li>Translate the object so that pivot-position is moved to the coordinate origin </li></ul><ul><li>Rotate the object about the coordinate origin </li></ul><ul><li>Translate the object so that the pivot point is returned to its original position </li></ul>(x r ,y r ) (a) Original Position of Object and pivot point (b) Translation of object so that pivot point (x r ,y r ) is at origin (c) Rotation was about origin (d) Translation of the object so that the pivot point is returned to position (x r ,y r )
  16. 17. General fixed point scaling <ul><li>Translate object so that the fixed point coincides with the coordinate origin </li></ul><ul><li>Scale the object with respect to the coordinate origin </li></ul><ul><li>Use the inverse translation of step 1 to return the object to its original position </li></ul>(x f ,y f ) (a) Original Position of Object and Fixed point (b) Translation of object so that fixed point (x f ,y f )is at origin (c) scaling was about origin (d) Translation of the object so that the Fixed point is returned to position (x f ,y f )
  17. 18. Composite Transformations (A) Translations If two successive translation vectors (t x1 ,t y1 ) and (t x2 ,t y2 ) are applied to a coordinate position P, the final transformed location P’ is calculated as: - P’=T(t x2 ,t y2 ) . {T(t x1 ,t y1 ) .P} ={T(t x2 ,t y2 ) . T(t x1 ,t y1 )} .P Where P and P’ are represented as homogeneous-coordinate column vectors. We can verify this result by calculating the matrix product for the two associative groupings. Also, the composite transformation matrix for this sequence of transformations is: - 1 0 t x2 0 1 t y2 0 0 1 <ul><li>0 t x1 </li></ul><ul><li>0 1 t y1 </li></ul><ul><li>0 0 1 </li></ul><ul><li>0 t x1 +t x2 </li></ul><ul><li>0 1 t y1 +t y2 </li></ul><ul><li>0 0 1 </li></ul>. = Or, T(t x2 ,t y2 ) . T(t x1 ,t y1 ) = T(t x1 +t x2 , t y1 +t y2 ) Which demonstrate that two successive translations are additive.
  18. 19. (B) Rotations Two successive rotations applied to point P produce the transformed position: - P’= R( Ө 2 ) . {R( Ө 1 ) . P} = {R( Ө 2 ) . R( Ө 1 )} . P By multiplication the two rotation matrices, we can verify that two successive rotations are additive: R( Ө 2 ) . R( Ө 1 ) = R ( Ө 1 + Ө 2 ) So that the final rotated coordinates can be calculated with the composite rotation matrix as: - P’ = R( Ө 1 + Ө 2 ) . P
  19. 20. (C) Scaling Concatenating transformation matrices for two successive scaling operations produces the following composite scaling matrix: - S x2 0 0 0 S y2 0 0 0 1 . = S x1 0 0 0 S y1 0 0 0 1 S x1 . S x2 0 0 0 S y1 .S y2 0 0 0 1 Or, S( S x2 , S y2 ) . S( S x1 , S y1 ) = S ( S x1 . S x2 , S y1 .S y2 ) The resulting matrix in this case indicates that successive scaling operations are multiplicative.
  20. 21. Other transformations <ul><li>Reflection is a transformation that produces a mirror image of an object. It is obtained by rotating the object by 180 deg about the reflection axis </li></ul>1 2 3 3’ 2’ 1’ Original position Reflected position Reflection about the line y=0, the X- axis , is accomplished with the transformation matrix <ul><li>0 0 </li></ul><ul><li>0 -1 0 </li></ul><ul><li>0 0 1 </li></ul>
  21. 22. Reflection -1 0 0 0 1 0 0 0 1 1’ 3’ 2’ 3 2 1 Original position Reflected position Reflection about the line x=0, the Y- axis , is accomplished with the transformation matrix
  22. 23. Reflection -1 0 0 0 -1 0 0 0 1 1’ 2’ 3’ 3 2 1 Original position Reflected position Reflection of an object relative to an axis perpendicular to the xy plane and passing through the coordinate origin X-axis Y-axis Origin O (0,0) The above reflection matrix is the rotation matrix with angle=180 degree. This can be generalized to any reflection point in the xy plane. This reflection is the same as a 180 degree rotation in the xy plane using the reflection point as the pivot point.
  23. 24. Reflection of an object w.r.t the straight line y=x 0 1 0 1 0 0 0 0 1 1’ 3’ 2’ 3 2 1 Original position Reflected position X-axis Y-axis Origin O (0,0)
  24. 25. Reflection of an object w.r.t the straight line y=-x 0 -1 0 -1 0 0 0 0 1 1’ 3’ 2’ 3 X-axis 1 Original position Reflected position 2 Y-axis Origin O (0,0) Line Y = - X
  25. 26. Reflection of an arbitrary axis y=mx+b 3 2 1 Original position
  26. 27. 3 2 1 Original position 3 2 1 Original position Translation so that it passes through origin 1’ 3’ 2’ 3 2 1 Reflected position Original position Rotate so that it coincides with x-axis and reflect also about x-axis 1’ 3’ 2’ 3 2 1 Original position Reflected position 1’ 3’ 2’ 3 2 1 Original position Reflected position Rotate back Translate back
  27. 28. Shear Transformations <ul><li>Shear is a transformation that distorts the shape of an object such that the transformed shape appears as if the object were composed of internal layers that had been caused to slide over each other </li></ul><ul><li>Two common shearing transformations are those that shift coordinate x values and those that shift y values </li></ul>
  28. 29. Shears <ul><li>Original Data y Shear x Shear </li></ul><ul><li>1 0 0 1 sh x 0 </li></ul><ul><li>sh y 1 0 0 1 0 </li></ul><ul><li>0 0 1 0 0 1 </li></ul>
  29. 30. An X- direction Shear (0,1) (1,1) (1,0) (0,0) (0,0) (1,0) (2,1) (3,1) For example, Sh x =2
  30. 31. An Y- direction Shear (0,1) (1,1) (1,0) (0,0) (0,0) (0,1) (1,3) (1,2) For example, Sh y =2 X X Y Y
  31. 32. CONCLUSION To manipulate the initially created object and to display the modified object without having to redraw it, we use Transformations.
  32. 33. Textbook <ul><li>Computer Graphics </li></ul><ul><li>C Version </li></ul><ul><ul><li>D. Hearn and M. P. Baker </li></ul></ul><ul><ul><li>2 nd Edition </li></ul></ul><ul><ul><li>PRENTICE HALL </li></ul></ul>
  33. 34. <ul><li>QUERY ? </li></ul>
  34. 35. THANK YOU ALL

×