We've updated our privacy policy. Click here to review the details. Tap here to review the details.
Activate your 30 day free trial to unlock unlimited reading.
Activate your 30 day free trial to continue reading.
Download to read offline
http://wiki.knoesis.org/index.php/MaterialWays
http://www.knoesis.org/?q=research/semMat
http://wiki.knoesis.org/index.php/MaterialWays
Abstract
The sharing, discovery, and application of materials science and engineering data and documents are possible only if domain scientists are able and willing to do so. We need to overcome technological challenges such as the development of convenient computational tools and repositories conducive to easy exchange, curation, attribution, and analysis of data, and cultural challenges such as proper protection, control, and credit for sharing data. Our thesis and value proposition is that associating machine-processable semantics with materials science and engineering data and documents can provide a solid foundation for overcoming challenges associated with data discovery, integration, and interoperability caused by data heterogeneity. Specifically, easy to use and low upfront cost lightweight semantics in the form of file-level annotation can enable document discovery and sharing, while deeper data-level annotation using standardized ontologies can benefit semantic search and summarization. Machine processability achieved through fine-grained semantic annotation, extraction, and translation can enable data integration, interoperability and reasoning, ultimately leading to Linked Open Materials Science Data. Thus, a different granularity of semantics provides a continuum of cost/ease of use and expressiveness trade-off. In this presentation, we also show the application of semantic techniques for content extraction from materials and process specifications which are semi-structured and table-rich, and the application of semantic web techniques and technologies for materials vocabulary integration and curation (via semantic media wiki), semantic web visualization, efficient representation of provenance metadata and access control (via singleton property), and biomaterials information extraction
http://wiki.knoesis.org/index.php/MaterialWays
http://www.knoesis.org/?q=research/semMat
http://wiki.knoesis.org/index.php/MaterialWays
Abstract
The sharing, discovery, and application of materials science and engineering data and documents are possible only if domain scientists are able and willing to do so. We need to overcome technological challenges such as the development of convenient computational tools and repositories conducive to easy exchange, curation, attribution, and analysis of data, and cultural challenges such as proper protection, control, and credit for sharing data. Our thesis and value proposition is that associating machine-processable semantics with materials science and engineering data and documents can provide a solid foundation for overcoming challenges associated with data discovery, integration, and interoperability caused by data heterogeneity. Specifically, easy to use and low upfront cost lightweight semantics in the form of file-level annotation can enable document discovery and sharing, while deeper data-level annotation using standardized ontologies can benefit semantic search and summarization. Machine processability achieved through fine-grained semantic annotation, extraction, and translation can enable data integration, interoperability and reasoning, ultimately leading to Linked Open Materials Science Data. Thus, a different granularity of semantics provides a continuum of cost/ease of use and expressiveness trade-off. In this presentation, we also show the application of semantic techniques for content extraction from materials and process specifications which are semi-structured and table-rich, and the application of semantic web techniques and technologies for materials vocabulary integration and curation (via semantic media wiki), semantic web visualization, efficient representation of provenance metadata and access control (via singleton property), and biomaterials information extraction
You just clipped your first slide!
Clipping is a handy way to collect important slides you want to go back to later. Now customize the name of a clipboard to store your clips.The SlideShare family just got bigger. Enjoy access to millions of ebooks, audiobooks, magazines, and more from Scribd.
Cancel anytime.Unlimited Reading
Learn faster and smarter from top experts
Unlimited Downloading
Download to take your learnings offline and on the go
You also get free access to Scribd!
Instant access to millions of ebooks, audiobooks, magazines, podcasts and more.
Read and listen offline with any device.
Free access to premium services like Tuneln, Mubi and more.
We’ve updated our privacy policy so that we are compliant with changing global privacy regulations and to provide you with insight into the limited ways in which we use your data.
You can read the details below. By accepting, you agree to the updated privacy policy.
Thank you!