Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

Subsonic Airplane Design

5,993 views

Published on

Subsonic Airplane Design

  • You are welcome to our new site'http://hasc.webs.com' at Helwan/Egypt.
    hoping you complete your profile as far as you can.
    It's free so you can kindly invite your friends to join us , it will be a part of our happiness.
    at'hascac@live.com'
    Please, contact us for your impression,suggestions and ideas to support us.

    Thanks in advance.
    The Moderator;
    E-mail'ahmadbassiouny@live.com' : Web site'http://ahmad1957.webs.com'.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

Subsonic Airplane Design

  1. 1. Subsonic Airplane Design Christopher Weyant Joseph Rebolledo COSMOS at UC Davis Cluster 3 August 3, 2006
  2. 2. Presentation Outline <ul><li>Main factors that allow flight </li></ul><ul><li>Ratios to interpret these factors </li></ul><ul><li>Important design considerations </li></ul><ul><li>Case study- Helios </li></ul>
  3. 3. I. Factors that Allow Airplane Flight <ul><li>Lift </li></ul><ul><li>Weight </li></ul><ul><li>Thrust </li></ul><ul><li>Drag </li></ul><ul><li>Center of mass </li></ul><ul><li>Center of pressure </li></ul>
  4. 4. Forces in Airplane Flight
  5. 5. How Lift is Created <ul><li>Observe streamlines </li></ul><ul><ul><li>Must be downwards pressure force to hold them to wing </li></ul></ul>
  6. 6. How Lift is Created <ul><li>Imagine boxes stacked above and below wing </li></ul><ul><li>Top of box must have higher pressure than bottom </li></ul><ul><li>Lower pressure on top of wing than bottom </li></ul><ul><li>Pressure gradient causes lift </li></ul>high pressure low pressure= next high pressure low pressure pressure force pressure force
  7. 7. Lift <ul><li>Three main ways to increase lift: </li></ul><ul><ul><li>Increase angle of attack </li></ul></ul><ul><ul><li>Camber </li></ul></ul><ul><ul><li>Vortex-Induced Lift </li></ul></ul>
  8. 8. Lift <ul><li>Change angle of attack </li></ul><ul><li>2. Camber </li></ul><ul><li>3. Vortex induced lift </li></ul><ul><li>- Watch for separation </li></ul>
  9. 9. Weight <ul><li>Weight measures the downward gravitational pull on the aircraft </li></ul><ul><li>Several components contribute to the weight of an aircraft: </li></ul><ul><ul><li>Physical plane </li></ul></ul><ul><ul><li>Fuel </li></ul></ul><ul><ul><li>Payload </li></ul></ul>
  10. 10. Weight Considerations <ul><li>Lift must exceed weight to take off </li></ul><ul><li>In obtaining lift, drag must be less than thrust to accelerate and take off </li></ul>
  11. 11. How Thrust is Created <ul><li>Propulsive device exerts force on air </li></ul><ul><li>Equal and opposite force exerted back on plane </li></ul><ul><li>Makes plane go forward and overcome drag </li></ul>
  12. 12. Thrust <ul><li>Pressure and sheer stress distribution on surface area cause thrust </li></ul><ul><li>Thrust equation </li></ul><ul><li>T=ṁ(V ∞ - V j ) </li></ul><ul><ul><li>T; thrust [newtons; kgm/s 2 ] </li></ul></ul><ul><ul><li>ṁ; mass flow through device [kg/s] </li></ul></ul><ul><ul><li>V ∞ ; velocity of air leaving plane [m/s] </li></ul></ul><ul><ul><li>V j ; velocity of air ahead of plane [m/s] </li></ul></ul>
  13. 13. Thrust <ul><li>Total power generated by propulsive device </li></ul><ul><li>= TV ∞ +1/2ṁ(V j -V ∞ ) 2 </li></ul><ul><li>(power available) + (wasted/ KE) </li></ul>
  14. 14. Thrust vs. Efficiency <ul><li>Useful power ( η p ) </li></ul><ul><li>= 2/(1+V j /V ∞ ) </li></ul><ul><li>100% efficiency has V j = V ∞ </li></ul><ul><li>However, then no thrust </li></ul><ul><li>Tradeoff </li></ul>
  15. 15. How Drag is Created <ul><li>Friction drag </li></ul><ul><ul><li>Drag due to friction over surface </li></ul></ul><ul><li>Pressure drag </li></ul><ul><ul><li>Inequality of surface pressure that causes drag </li></ul></ul><ul><li>Induced drag </li></ul><ul><ul><li>Pressure drag associated with wing tip vortices </li></ul></ul>
  16. 16. Center of Pressure <ul><li>Sum pressure forces into a single force </li></ul><ul><li>Point through which lift and drag act </li></ul><ul><li>Also, the point at which there is no moment </li></ul><ul><li>To find, plot distributed load and find centroid </li></ul>
  17. 17. Center of Mass <ul><li>Average location of weight </li></ul><ul><li>Balance object on that point </li></ul><ul><li>Point from which gravity can be drawn </li></ul><ul><li>To find, cg = ( ∫ [x * w(x)]dx) / ( ∫ [w(x)]dx) </li></ul><ul><ul><li>  Sum of weights of slices times distances to nose divided by the sum of the weights; weighted average </li></ul></ul><ul><ul><li>x= distance from nose tip of aircraft back to slice [m] </li></ul></ul><ul><ul><li>dx= small slices perpendicular to x [m] </li></ul></ul><ul><ul><li>w(x)= weight of slice contained in dx; newton [kgm/s 2 ] </li></ul></ul><ul><ul><li>Assume weight is distributed symmetrically around center line </li></ul></ul>
  18. 18. Centers of Mass and Pressure <ul><li>Center of pressure is behind center of mass </li></ul><ul><li>Leads to increased stability by correcting for angle of attack </li></ul><ul><li>Horizontal stabilizer provides downwards force </li></ul><ul><li>Wing provides upwards lift </li></ul><ul><li>When angle of attack increases, wing lift increase and horizontal stabilizer rotates nose back down </li></ul><ul><li>They must be on same line, so as to not create torque along the yaw or roll axes </li></ul>
  19. 19. II. Useful Non-dimensional Ratios <ul><ul><li>Mach number </li></ul></ul><ul><ul><li>Reynolds number </li></ul></ul><ul><ul><li>Aspect ratio </li></ul></ul><ul><ul><li>Coefficient of lift </li></ul></ul><ul><ul><li>Coefficient of drag </li></ul></ul>
  20. 20. Mach Number <ul><li>Compressibility effects </li></ul><ul><li>Ma= speed airplane/ speed sound= V/a </li></ul><ul><ul><li>Ma<1; subsonic </li></ul></ul><ul><ul><li>Ma≈1; transonic </li></ul></ul><ul><ul><li>Ma>1; supersonic </li></ul></ul><ul><ul><li>Ma>>1; hypersonic </li></ul></ul><ul><li>Ma 2 =-( Δρ / ρ )/( Δ V/V) </li></ul><ul><li> = change in density/change in velocity </li></ul>
  21. 21. Reynolds number <ul><li>Viscosity effects </li></ul><ul><li>Re= ρ ∞ v ∞ c/ μ ∞ </li></ul><ul><ul><li>pressure vs. viscosity </li></ul></ul><ul><ul><li>ρ ∞ = free stream air density [kg/m 3 ] </li></ul></ul><ul><ul><li>V ∞ = free stream air velocity [m/s] </li></ul></ul><ul><ul><li>c= chord length [m] </li></ul></ul><ul><ul><li>μ ∞ = ambient coefficient of viscosity; [Kg/ms] </li></ul></ul><ul><li>Less than 2300 is laminar </li></ul><ul><li>Over 2300 is turbulent </li></ul>
  22. 22. Aspect Ratio <ul><li>Three dimensional effects </li></ul><ul><li>Tells how skinny wing is </li></ul><ul><li>AR= b 2 /S </li></ul><ul><ul><li>b= wingspan [m] </li></ul></ul><ul><ul><li>S= planform area of wing [m 2 ] </li></ul></ul>
  23. 23. Coefficient of Lift <ul><li>C L = L/( ½ ρ V 2 S) </li></ul><ul><ul><li>C L =coefficient of lift [dimensionless] </li></ul></ul><ul><ul><li>L= lift; newton [kgm/s 2 ] </li></ul></ul><ul><ul><li>ρ = air density [kg/m 3 ] </li></ul></ul><ul><ul><li>V= velocity; [m/s] </li></ul></ul><ul><ul><li>S= planform wing area [m 2 ] </li></ul></ul>
  24. 24. Coefficient of Drag <ul><li>C D = D/( ½ ρ V 2 S) </li></ul><ul><ul><li>C D =coefficient of drag [dimensionless] </li></ul></ul><ul><ul><li>D= drag; newton [kgm/s 2 ] </li></ul></ul><ul><ul><li>ρ = air density [kg/m 3 ] </li></ul></ul><ul><ul><li>V= velocity [m/s] </li></ul></ul><ul><ul><li>S= planform wing area [m 2 ] </li></ul></ul>
  25. 25. III. Design of Subsonic Airplanes <ul><li>Stalling velocity </li></ul><ul><li>Wing design </li></ul><ul><li>Induced drag </li></ul><ul><li>Angle of attack </li></ul><ul><li>Ceiling altitude </li></ul><ul><li>Evaluating airfoils </li></ul>
  26. 26. Stalling Velocity <ul><li>V stall = √(2/ ρ ∞ )(W/S)(1/C L max ) </li></ul><ul><ul><li>V stall = stalling velocity [m/s] </li></ul></ul><ul><ul><li>ρ ∞ = free stream air density [ kg/m 3 ] </li></ul></ul><ul><ul><li>W= weight; newtons [ kgm/s 2 ] </li></ul></ul><ul><ul><li>S= planform surface area of wing [m 2 ] </li></ul></ul><ul><ul><li>C L max = maximum lift coefficient [dimensionless] </li></ul></ul>
  27. 27. Implications <ul><li>Gets larger at higher altitudes, due to decreasing air density </li></ul><ul><li>Increases with weight </li></ul><ul><li>Decreases with planform wing area </li></ul><ul><li>Decreases with higher C L max </li></ul>
  28. 28. Different Types of Wings <ul><li>High aspect- ratio straight wing </li></ul><ul><li>Low aspect- ratio straight wing </li></ul><ul><li>Swept wing </li></ul><ul><li>Delta wing </li></ul><ul><ul><li>Simple delta </li></ul></ul><ul><ul><li>Cropped delta </li></ul></ul><ul><ul><li>Notched delta </li></ul></ul><ul><ul><li>Double delta </li></ul></ul>
  29. 29. Prandtl’s Lifting Line Theory <ul><li>a=a o /(1+(a o /  e 1 AR) </li></ul><ul><li>a= lift slope for finite wing [per radian] </li></ul><ul><li>a 0 = lift slope for infinite wing [per radian] </li></ul><ul><li>e 1 = ratio of tip chord to root chord [dimensionless] </li></ul><ul><li>AR= b 2 /S [dimensionless] </li></ul>
  30. 30. Implications <ul><li>Lift slope decreases with aspect ratio </li></ul><ul><li>Straight wing to maximize e 1 </li></ul><ul><li>Experimentally, C L max decreases with aspect ratio </li></ul>
  31. 31. Prandtl- Glauert Rule <ul><li>a o,comp = a 0 / √1 - M ∞ 2 </li></ul><ul><li>a o = incompressible lift slope [per radian] </li></ul><ul><li>M ∞ = free stream mach number [dimensionless] </li></ul>
  32. 32. Combined <ul><li>a comp = a o / √1-M ∞ +a o /(  e 1 AR) </li></ul><ul><li>a o = incompressible lift slope [per radian] </li></ul><ul><li>a comp = compressible lift slope [per radian] </li></ul><ul><li>M ∞ = free stream mach number [dimensionless] </li></ul><ul><li>e 1 = ratio of tip chord to root chord [dimensionless] </li></ul><ul><li>AR= b 2 /S [dimensionless] </li></ul><ul><li>Works well for .3<Ma<.7 </li></ul>
  33. 33. Implications <ul><li>Same as before, but modified to account for compressible flows </li></ul><ul><li>Lift slope decreases with aspect ratio </li></ul><ul><li>Straight wing to maximize e 1 </li></ul><ul><li>Experimentally, C L max decreases with aspect ratio </li></ul>
  34. 34. Equation for Induced Drag <ul><li>C Di = (C L 2 )/(  (AR)e) </li></ul><ul><li>Where: </li></ul><ul><ul><li>C L ; coefficient of lift [dimensionless] </li></ul></ul><ul><ul><li>AR; aspect ratio [dimensionless] </li></ul></ul><ul><ul><li>e; spanwise efficiency factor, how C Di for wing relates to ideal wing with the same aspect ratio [dimensionless] </li></ul></ul>
  35. 35. Implications <ul><li>Biggest source of drag for low speed aircraft </li></ul><ul><li>Wings with the largest possible aspect ratio </li></ul><ul><li>For low speed aircraft, aspect ratios as high as 15 or more are used </li></ul>
  36. 36. Angle of Attack <ul><li>Angle that wing is inclined to flow </li></ul><ul><li>Want only small angle of attack needed to achieve adequate lift at low speed </li></ul><ul><li>Can be built into wing through camber </li></ul>
  37. 37. Ceiling Altitude <ul><ul><li>( R/C) max = maximum rate of climb [m/sec] </li></ul></ul><ul><ul><li>η pr = propeller efficiency; power available/ shaft power [dimensionless] </li></ul></ul><ul><ul><li>P= power [W] </li></ul></ul><ul><ul><li>W= weight newtons [ kgm/s 2 ] </li></ul></ul><ul><ul><li>ρ ∞ = free stream air density [kg/m 3 ] </li></ul></ul><ul><ul><li>K= Coefficient of Cl 2 in drag polar [dimensionless] </li></ul></ul><ul><ul><li>C D.O= Zero lift drag coefficient [dimensionless] </li></ul></ul><ul><ul><li>S= planform surface area of wing [m 2 ] </li></ul></ul><ul><ul><li>L/D max = maximum lift to drag ratio [dimensionless] </li></ul></ul>(R/C) max =( η pr P/W)–[(2/ ρ ∞ )√K/3C D.0 (W/S)] 1/2 *(1.55/(L/D max ))
  38. 38. Implications <ul><li>η pr P/W want big </li></ul><ul><ul><li>Bigger engine, more efficient propeller, less weight </li></ul></ul><ul><li>K wants smaller </li></ul><ul><ul><li>Higher aspect ratio </li></ul></ul><ul><li>W/S want small </li></ul><ul><li>- Less weight </li></ul><ul><li>- Larger surface area of wing </li></ul><ul><li>L/D max want big </li></ul><ul><ul><li>Less drag </li></ul></ul><ul><ul><li>More lift </li></ul></ul>
  39. 39. Limits on Reducing Drag <ul><li>Aspect ratio and surface area have to be within a range </li></ul><ul><li>Makes aircraft heavier which requires more lift </li></ul><ul><li>Increases skin friction drag which requires more power </li></ul><ul><li>If aspect ratio is too high, loose stability </li></ul>
  40. 40. Evaluating Airfoils
  41. 41. Explanation <ul><li>For these graphs, Re= 200,500 </li></ul><ul><li>First graph shows C D and C L of airfoil </li></ul><ul><ul><li>Want high C L for given C D </li></ul></ul><ul><li>Second shows  and  C L </li></ul><ul><ul><li>Want high C L for given  </li></ul></ul><ul><li>Third shows  and CM </li></ul><ul><ul><li>Want low CM for given  </li></ul></ul>
  42. 42. Coffin Corner <ul><li>Problem faced by high altitude low speed flight </li></ul><ul><li>If slow down at high altitude, stall </li></ul><ul><li>If speed up, break sound barrier and generate too much drag and stall </li></ul>
  43. 43. IV. Case Study- Helios <ul><li>Part of HALE </li></ul><ul><li>$103 million from NASA </li></ul><ul><li>$36 million from industry </li></ul>
  44. 44. Goals for Helios <ul><li>Reach 100,000 ft. </li></ul><ul><li>Have non-stop flight for 24 hours, and to have at least 14 hours above 50,000 ft. </li></ul>
  45. 45. Significance of Helios <ul><li>Study atmospheric science </li></ul><ul><li>Observe the Earth </li></ul><ul><li>Serve as telecommunication system </li></ul>
  46. 46. Helios Aircraft Statistics <ul><li>Wing span of 247 ft </li></ul><ul><li>Length of 12 ft </li></ul><ul><li>Wing chord of 8 ft </li></ul><ul><li>Wing area is 1,976 sq ft </li></ul><ul><li>Aspect ratio of 31 to 1 </li></ul><ul><li>Gross weight is 1,600 lb </li></ul><ul><li>Payload of 726 lbs </li></ul><ul><li>Airspeed of 19 to 27 mph </li></ul><ul><li>Up to 170 mph at altitude </li></ul><ul><li>72 trailing edge elevators </li></ul>
  47. 47. Helios Propulsion Statistics <ul><li>14 brushless DC electric motors, 1.5 kW each </li></ul><ul><li>62,000 solar cells </li></ul><ul><li>Endurance of several days to several months </li></ul>
  48. 48. Helios Accomplishes a Goal (2001) <ul><li>Unofficial altitude record of 96,863 ft </li></ul><ul><li>Stayed over 96,000 ft for over 40 min </li></ul><ul><li>Did not meet flight endurance goal </li></ul><ul><li>Scientists worked on for 2003 flight </li></ul>
  49. 49. Helios Malfunctions <ul><li>3,000 ft. up in restricted Navy airspace </li></ul><ul><li>Control difficulties </li></ul><ul><li>Severe oscillations occurred </li></ul><ul><li>Structural damage lead to crash </li></ul><ul><li>No environmental effect, but plane lost </li></ul><ul><li>75 percent by weight recovered </li></ul>
  50. 50. Summary <ul><li>Main factors that allow flight </li></ul><ul><li>Ratios to interpret these factors </li></ul><ul><li>Important design considerations </li></ul><ul><li>Case study- Helios </li></ul>
  51. 51. Acknowledgements <ul><li>Professor Hafez </li></ul><ul><li>Professor Horsley </li></ul><ul><li>Michael Paskowitz </li></ul><ul><li>Margarita Montes </li></ul><ul><li>Tim McGuire </li></ul><ul><li>Taylor Roche </li></ul><ul><li>Beth Kuspa </li></ul>
  52. 52. Bibliography <ul><li>www.nasa.gov </li></ul><ul><li>Aircraft Performance and Design by John D. Anderson, Jr. </li></ul><ul><li>http://www.nasg.com/afdb/list-polar-e.phtml </li></ul><ul><li>http://www.aa.nps.navy.mil/~jones/research/gui/joukowski/sample_results/ </li></ul>

×