Successfully reported this slideshow.
We use your LinkedIn profile and activity data to personalize ads and to show you more relevant ads. You can change your ad preferences anytime.

IA. Pourquoi et Comment.

97 views

Published on

Naviguer l’émergence de l’intelligence artificielle. Pour les membres de l'ARIM/MRIA à Montréal.

Published in: Technology
  • Hello! Get Your Professional Job-Winning Resume Here - Check our website! https://vk.cc/818RFv
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here

IA. Pourquoi et Comment.

  1. 1. Intelligence Artificielle Opportunités et défis Sylvain Carle Associé @ RealVentures ARIM - MRIA Avril 2018
  2. 2. IA: pourquoi et comment Naviguer l’émergence de l’intelligence artificielle Sylvain Carle Associé @ RealVentures ARIM - MRIA Avril 2018
  3. 3. 
 Mon nom est @sylvain Je viens de l’internet. J’ai déjà dit que j’étais un coureur des bois numérique. Il y a 20 ans je venais du futur. J’espère que bientôt je viendrai du passé!
  4. 4. 
 Mon nom est @sylvain Je viens de l’internet. J’ai déjà dit que j’étais un coureur des bois numérique. Il y a 20 ans je venais du futur. J’espère que bientôt je viendrai du passé!
  5. 5. https://realventures.com/equipe/?lang=fr Je suis un futuriste pragmatique (un VC)
  6. 6. The Internet is providing the fabric on which the Information age is built and provides the network infrastructure to turn software into massively scalable platforms, whether centralized or decentralized (blockchain) enabling new services, products, experiences and business models; Mobility is enabling 3 billion people to interact with their information and with each other anywhere at anytime and; Connectivity added to other devices such as TVs, watches, cars, drones, clothes, robots, homes, AR/VR head mounted displays offers new ways to interact with and experience the world’s information; Continued improvements in Computing efficiency for different types of workloads whether in the cloud or at the edge is enabling new platforms and applications to emerge such as robotics, VR/AR, AI, blockchain, smart devices, etc. The storage, usage and display (UI) of Big Data we and our businesses generate enable faster, more impactful, data driven decisions. The digital revolution is now disrupting all aspects of society including retail, transportation, education, healthcare, financial services, work, real estate, energy, government, human communication, manufacturing, genomics, nanotechnology, etc. La (r)évolution numérique touche l’ensemble des secteurs
  7. 7. The Internet is providing the fabric on which the Information age is built and provides the network infrastructure to turn software into massively scalable platforms, whether centralized or decentralized (blockchain) enabling new services, products, experiences and business models; Mobility is enabling 3 billion people to interact with their information and with each other anywhere at anytime and; Connectivity added to other devices such as TVs, watches, cars, drones, clothes, robots, homes, AR/VR head mounted displays offers new ways to interact with and experience the world’s information; Continued improvements in Computing efficiency for different types of workloads whether in the cloud or at the edge is enabling new platforms and applications to emerge such as robotics, VR/AR, AI, blockchain, smart devices, etc. The storage, usage and display (UI) of Big Data we and our businesses generate enable faster, more impactful, data driven decisions. The digital revolution is now disrupting all aspects of society including retail, transportation, education, healthcare, financial services, work, real estate, energy, government, human communication, manufacturing, genomics, nanotechnology, etc. La (r)évolution numérique touche l’ensemble des secteurs
  8. 8. A I D ATA U I C O N N E C T I V I T YM O B I L E I N T E R N E T S O F T WA R E 2 0 0 8 2 0 11 2 0 1 4 2 0 1 7 L’évolution du stack
  9. 9. Google acquired Deepmind for $650M, launched Alphago, GPU cloud, AI datacenter optimization, tensorflow, imagecloud, translate, self driving cars, Health, and training all engineers in AI. Notable quotes: Sundai Pichai - “we will evolve in computing from a mobile-first to an AI-first world”; Eric Schmidt – “Machine learning will cause every successful IPO win in 5 years”, donated $4.5M to MILA in MTL for AI research; Facebook open sourced AI framework, opened Messenger to bots, acquired Wit.ai, newsfeed powered by AI, launched Facebook AI Research (FAIR) lead by Yann Lecun, vision to build an AI agent per user; Amazon: launched Echo (home voice platform), Alexa (intelligent personal assistant), AI Cloud, acquired Evi for $26M in 2012), acquired Angel.ai for chatbots, working on drones; Microsoft acquired Maluuba, launched GPU cloud, Cortana, Microsoft AI Research, smart bot framework, invested in Element AI and donated $7M to MILA in MTL for AI research; Apple acquired Siri for $400M, recruited Ruslan Salakhutdinov from Carnegie Mellon (ex-UofT) to lead AI research team, started open sourcing AI research, publicly stated importance of AI to success; Others worth mentioning: Tesla, Uber (Acquired Otto for $680M, Geometric Intelligence) and leading car manufacturers with self-driving cars (GM bought Cruise for $1B), Nvidia and Intel (Nervana for $250M) for AI semiconductors, Salesforce (Metamind and Tempo AI acquisitions, Einstein initiative), Baidu, Tencent, Alibaba, Samsung (Viv), Netflix, IBM (Watson), Twitter (Magic Pony), GE (Bit Stew Systems); Every successful company will require applied AI research to win and the market leaders are showing the way, acquiring 140 AI companies since 2011 including 40 in 2016 and hiring all the AI talent they can find…
  10. 10. AI First
 c’est le nouveau Mobile First.
  11. 11. http://www.pinterest.com/pin/125608277076985104/
  12. 12. Not for redistribution 12 Element AI as co-founded by Yoshua Bengio, (founding father of AI renaissance) JF Gagné (co- founder of Planora, Chief Product officer at JDA Software), Nicolas Chapados (PhD, co-founded Apstat with Yoshua, Planora and hedge fund) and Real Ventures to build the world’s leading applied AI research lab and implementation platform to launch AI first solutions in partnership with large corporations and innovative startups; Element helps companies make money with AI from fundamental research, to applied research, to application/solution development to implementation, monetization and/or joint ventures; Element’s research lab is uniquely connected to the world best academic ecosystems including MILA, McGill, Poly, UofT, UBC, Microsoft and Cortana Research through its fellowship program and partnership with Microsoft; Element completed initial round of founding co-led by Microsoft Ventures and Real Ventures in October ’16; Element provides Real Ventures with credibility in the AI space, access to its network in AI academia and corporations, due diligence support, proprietary deal flow and applied AI research support for We are recognized leaders of the Canadian AI ecosystem as a result of co-founding applied AI research
  13. 13. http://www.pinterest.com/pin/125608277076955168/
  14. 14. 1. La capacité d’accumulation (collecte, entreposage) 2. La rétrospective (voir, comprendre ce qui s’est passé) 3. L’analyse des signaux en temps réel (aggrégation et alertes) 4. Pouvoir émettre des recommendations (données et actions passées) 5. Capacité de prédictions (avec haut degré de certitude) 6. Prescription et automatisation (pur numérique et instrumentation) Le modèle de maturité des données massives (big data) Inspiré de https://en.wikipedia.org/wiki/Capability_Maturity_Model
  15. 15. Le modèle de maturité des données massives (big data) 1. La capacité d’accumulation (collecte, entreposage) 2. La rétrospective (voir, comprendre ce qui s’est passé) 3. L’analyse des signaux en temps réel (aggrégation et alertes) 4. Pouvoir émettre des recommendations (données et actions passées) 5. Capacité de prédictions (avec haut degré de certitude) 6. Prescription et automatisation (pur numérique et instrumentation)
  16. 16. 1. IA générale (AGI) vs IA appliquée (narrow, specialized) 2. La définition de l’IA change tout le temps… “John McCarthy, who invented the name Artificial Intelligence, noted, the definition of specialized AI is changing all of the time. Specifically, once a task formerly thought to characterize artificial intelligence becomes routine — like the aforementioned chess-playing, or Go, or a myriad of other taken-for- granted computer abilities — we no longer call it artificial intelligence.” 3. IA comme “intelligence augmentée” Le contexte actuel pour de l’intelligence artificielle http://cacm.acm.org/magazines/2012/1/144824-artificial-intelligence-past-and-future/fulltext 
 https://stratechery.com/2017/the-arrival-of-artificial-intelligence/
  17. 17. Le contexte actuel pour de l’intelligence artificielle https://jods.mitpress.mit.edu/pub/issue3-case
  18. 18. https://thenextweb.com/contributors/2018/01/20/ai-will-turn-workforce-sweet-business-centaurs/ https://techcrunch.com/2016/11/01/how-combined-human-and-computer-intelligence-will-redefine-jobs/ Being a centaur in the workplace means taking advantage of the vast analytical capabilities of AI-enabled technology and adding humanthinking. The applications for the centaur model in the workplace are potentially endless, but here are a few example fields that are well-suited for the combination of deep analysis and human creativity…
  19. 19. Les nouvelles capacités par l’intelligence artificielle Le point de bascule: quand la machine dépasse l’humain moyen dans la reconnaissance et l’interprétation des signaux dit “intelligents”. Le language, le monde qui nous entoure (prolifération de senseurs).
 1. La lecture de textes (NLP sémantique). 2. La compréhension de la voix (NLP audio). 3. La reconnaissance visuelle (CV, classification). 4. Niveaux multiples d’interprétation et d’abstraction. 5. Apprentissage profonds, non-supervisé, par contre-exemples. 6. Mise en réseau et en comm
  20. 20. Les attributs qui propulsent l’intelligence artificielle La “tempête parfaite”.
 1. Publication ouverte. https://arXiv.org 2. Un graphe des chercheurs facile d’accès. 
 https://scholar.google.ca/scholar?q=deep+learning+paper 3. La plupart de librairies de code en logiciel libre. 4. Beaucoup de cours gratuits en ligne. 5. Une communauté accueillante (l’esprit pédagogue de Y. Bengio) 6. Instituts de recherches “plusse meilleurs” : CIFAR, MILA, IVADO. 7. Accès aux données de références et nouvelles données
  21. 21. http://keatext.ai
  22. 22. https://delphia.com/
  23. 23. https://www.kickstarter.com/projects/mindset/headphones
  24. 24. Quelques liens (spécifiques à la recherche marketing) 1. AI: Friend or Foe? 5 Tips to Add Automation to Market Research
 https://www.insightsassociation.org/article/ai-friend-or-foe-5-tips-add-automation-market-research 2. Faster, cheaper and more efficient: AI-powered market research is here https://martechtoday.com/faster-cheaper-and-more-efficient-ai-powered-market-research-is-now-here-207596 3. How Artificial Intelligence Will Affect Market Research in 2018 https://knect365.com/insights/article/49d59f88-3255-4938-b9b7-2332169d828b/how-artificial-intelligence-will-affect- market-research-in-2018 4. Artificial Intelligence Will Be a Disruptive Force In Market Research https://www.martecgroup.com/artificial-intelligence-in-market-research/
 
 5. 4 Reasons Why AI-Powered Market Research Should Be in Your Toolkit https://aboveintelligent.com/4-reasons-why-ai-powered-market-research-should-be-in-your-toolkit-5aaabf77c423
 
 6. The Future is Now: Leveraging AI in Market Research https://www.insightsassociation.org/conference-session/leveraging-artificial-intelligence-colgate- palmolive%E2%80%99s-innovation-research-CRC2016
  25. 25. Quelques liens (généraux) 1. Building an AI Startup: Realities & Tactics. http://mattturck.com/2016/09/29/building-an-ai-startup/ 
 2. O’Reilly Artificial Intelligence Newsletter. http://www.oreilly.com/ai/newsletter.html 3. Highlights from the O'Reilly AI Conference in New York 2016. https://www.oreilly.com/ideas/keynotes-from-ai-new- york-2016 4. The Competitive Landscape for Machine Intelligence (2016). https://hbr.org/2016/11/the-competitive-landscape-for- machine-intelligence et https://www.oreilly.com/ideas/the-current-state-of-machine-intelligence-3-0 5. The US Administration’s Report on the Future of Artificial Intelligence. https://obamawhitehouse.archives.gov/blog/ 2016/10/12/administrations-report-future-artificial-intelligence et Stratégie France IA - http://www.enseignementsup- recherche.gouv.fr/cid114739/rapport-strategie-france-i.a.-pour-le-developpement-des-technologies-d-intelligence- artificielle.html 6. 5 Big Predictions for Artificial Intelligence in 2017. https://www.technologyreview.com/s/603216/5-big-predictions-for- artificial-intelligence-in-2017/ 7. A Sneak Peek at the State of AI 2016. https://medium.com/swlh/a-sneak-peek-at-the-state-of-ai-2016-d5d079e0c4de 8. Big Data et Intelligence Artificielle (panel IVADO des startups IA de Montréal). https://www.youtube.com/watch? v=g66X1lQpYZk&feature=youtu.be#t=72m49s
  26. 26. IA: pourquoi et comment Naviguer l’émergence de l’intelligence artificielle Sylvain Carle sylvain@realventures.com ARIM - MRIA Avril 2018

×